Lepton flavour and number violation with K decays at CERN

Evgueni Goudzovski

(Université Catholique de Louvain)

email: goudzovs@mail.cern.ch

Outline:

- 1) The NA48/NA62 experiments at CERN;
- 2) Lepton flavour universality test with $K^+ \rightarrow e^+ v/K^+ \rightarrow \mu^+ v$ decays;
- 3) Search for the lepton number violating $K^+ \rightarrow \pi^- \mu^+ \mu^+$ decay;
- 4) Conclusions.

46th Rencontres de Moriond (EW session) La Thuile, Italy • 16 March 2011

NA48/NA62 experiments at CERN

CERN NA48/NA62 experiments

NA48/NA62 K⁺ beam line

The detector

Data taking

- NA48/2: ~six months in 2003-04.
- NA62 (phase I): ~four months in 2007.

Principal subdetectors for R_K:

- Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy ⇒ efficiency; Δp/p = 0.47% + 0.020%*p [GeV/c] (in 2007)
- Hodoscope

fast trigger, precise t measurement (150ps). Vacu

• Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous; $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]; $\sigma_x = \sigma_y = 0.42/E^{1/2} + 0.6mm$ (1.5mm@10GeV).

Lepton flavour universality in K⁺→l⁺v decays

Leptonic meson decays: $P^+ \rightarrow I^+ v$

(numerical examples for $M_H = 500 \text{GeV}/\text{c}^2$, $\tan\beta = 40$)

$\pi^+ \rightarrow \nu: \Delta\Gamma/\Gamma_{SM}$	$\approx -2(m_{\pi}/m_{H})^{2}$	$m_d/(m_u + m_d)$ tar	$n^2\beta \approx -2 \times 10^{-4}$
$K^+ \rightarrow \nu: \Delta \Gamma / \Gamma_{SM}$	$\approx -2(m_K/m_H)^2$	tan ² β	≈ –0.3%
$D_{s}^{+} \rightarrow \nu : \Delta \Gamma / \Gamma_{SM}$	$\approx -2(m_D/m_H)^2$	$(m_s/m_c) \tan^2\beta$	≈ – 0.4%
$B^+ \rightarrow \nu: \Delta \Gamma / \Gamma_{SM}$	$\approx -2(m_B/m_H)^2$	tan ² β	≈ −30%

H[±] exchange in B⁺ $\rightarrow \tau^+ \nu$ (R. Barlow, CKM 2010, arXiv:1102.1267)

BaBar+Belle: $Br_{exp}(B \rightarrow \tau \nu) = (1.64 \pm 0.34) \times 10^{-4}$ (HFAG) Standard Model: $Br_{SM}(B \rightarrow \tau \nu) = (1.20 \pm 0.25) \times 10^{-4}$ (f_B from HPQCD, $|V_{ub}|$ from HFAG)

~3σ discrepancy between B_{τν} measurement and expectation from a global CKM fit [UTfit, CKMfitter, ICHEP2010] 7

$$\begin{aligned} R_{K} &= K_{e2}/K_{\mu2} \text{ in the SM} \end{aligned}$$
Observable sensitive to Lepton Flavour Violation:

$$R_{K} &= \frac{\Gamma(K^{\pm} \rightarrow e^{\pm}\nu)}{\Gamma(K^{\pm} \rightarrow \mu^{\pm}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot (1 + \delta R_{K}^{rad.corr.})$$
(similarly, R_{\pi} in the pion sector)
Helicity suppression: f~10⁻⁵
Radiative correction (few %) due to K⁺ → e⁺v_{\gamma} (IB) process, by definition included into R_{K}
$$\underbrace{s_{\nu}}_{V_{e}} \quad \underbrace{s_{e}}_{K^{+}} \quad e^{+} \quad \underbrace{s_{\nu}}_{K^{+}} \quad \underbrace{s_{$$

- <u>SM prediction</u>: excellent <u>sub-permille</u> accuracy: not obstructed by hadronic uncertainties.
- Measurements of R_K and R_{π} have long been considered as tests of lepton universality.
- <u>Understood recently</u>: helicity suppression of R_{K} might enhance sensitivity to non-SM effects to an experimentally accessible level.

 V_{e}, V_{l}

 $R_{\kappa}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

 $R_{\pi}^{SM} = (12.352 \pm 0.001) \times 10^{-5}$

Phys. Lett. 99 (2007) 231801

$R_{K} = K_{e2}/K_{\mu 2}$ beyond the SM

<u>2HDM – tree level</u> (including SUSY)
K₁₂ can proceed via exchange of charged Higgs H[±] instead of W[±]
→ Does not affect the ratio R_K

<u> 2HDM – one-loop level</u>

Dominant contribution to R_K : H[±] mediated <u>LFV</u> (rather than LFC) with emission of v_τ $\rightarrow R_K$ enhancement can be experimentally accessible

$$\mathbf{R}_{\mathbf{K}}^{\text{LFV}} \approx \mathbf{R}_{\mathbf{K}}^{\text{SM}} \left[1 + \left(\frac{\mathbf{m}_{\mathbf{K}}^4}{\mathbf{M}_{\mathbf{H}^{\pm}}^4} \right) \left(\frac{\mathbf{m}_{\tau}^2}{\mathbf{M}_{\mathbf{e}}^2} \right) | \boldsymbol{\Delta}_{\mathbf{13}} |^2 \text{tan}^6 \, \beta \right]$$

Up to ~1% effect in large (but not extreme) tan β regime with a massive H[±]

Example: $(\Delta_{13}=5\times10^{-4}, \tan\beta=40, M_{H}=500 \text{ GeV/c}^{2})$ lead to $R_{K}^{MSSM} = R_{K}^{SM}(1+0.013).$

Analogous SUSY effect in pion decay is suppressed by a factor $(M_{\pi}/M_{K})^{4} \approx 6 \times 10^{-3}$

Large effects in B decays due to $(M_B/M_K)^4 \sim 10^4$: $B_{\mu\nu}/B_{\tau\nu} \rightarrow \sim 50\%$ enhancement; $B_{e\nu}/B_{\tau\nu} \rightarrow$ enhanced by ~one order of magnitude. Out of reach: $Br^{SM}(B_{e\nu}) \approx 10^{-11}$

K_{e2} vs K_{u2} selection

$K_{\mu 2}$ background in K_{e2} sample

Main background source

Muon 'catastrophic' energy loss in LKr by emission of energetic bremsstrahlung photons. $P_{ue} \sim 3 \times 10^{-6}$ (and momentum-dependent).

 $P_{\mu e}$ / $R_K \sim 10\%$: K_{µ2} decays represent a major background

Direct measurement of P_{ue}

Pb wall (9.2X₀) in front of LKr: suppression of $\sim 10^{-4}$ positron contamination due to $\mu \rightarrow e$ decay.

 $K_{\mu 2}$ candidates, track traversing Pb, p>30GeV/c, E/p>0.95: positron contamination <10⁻⁸.

 P_{ue} is modified by the Pb wall:

- \rightarrow ionization losses in Pb (low p);
- \rightarrow bremsstrahlung in Pb (high p).

The correction $f_{Pb} = P_{\mu e} / P_{\mu e}^{Pb}$ is evaluated with a dedicated Geant4-based simulation

[Muon bremsstrahlung model: Kelner et al., Phys. Atom. Nucl. 60(1997)576] **13**

Muon mis-identification

Ke2: partial (40%) data set

59,813 K⁺→e⁺∨ candidates. Positron ID efficiency: (99.27±0.05)%. B/(S+B) = (8.71±0.24)%.

cf. KLOE: 13.8K candidates (K⁺ and K⁻), ~90% electron ID efficiency, 16% background

Source	B/(S+B)
K ₁₁₂	(6.11±0.22)%
K _{µ2} (μ→e)	(0.27±0.04)%
$K_{e2\gamma}$ (SD ⁺)	(1.07±0.05)%
$K_{e3(D)}$	(0.05±0.03)%
$K_{2\pi(D)}$	(0.05±0.03)%
Beam halo	(1.16±0.06)%
Total	(8.71±0.24)%

K_{µ2}: partial (40%) data set

2500 ×10³

2000

1500

1000

500

x10

20

30

18.03M candidates (pre-scaled trigger). B/(S+B) = (0.38±0.01)%, background dominated by beam halo. Sensitivity to heavy neutrinos $(K^+ \rightarrow \mu^+ N)$ is limited by beam halo and similar to that of Hayano et al., PLB49 (1982) 1305

40

50

Lepton momentum, GeV/c

... in lepton momentum bins

– K⁺→μ⁺ν candidates

NA62

60

Beam halo ×10

Full NA62 data set: precision will be improved from 0.5% to 0.4%. E. Goudzovski/Moriond EW/16 March 2011

17

R_K world average

Lepton number violation: $K^+ \rightarrow \pi^- \mu^+ \mu^+$, $K^- \rightarrow \pi^+ \mu^- \mu^-$

Motivation

 $K^+ \rightarrow \pi^- \mu^+ \mu^+$ proceeds if the neutrino is a Majorana particle:

$$BR\approx 10^{-8}\times (\langle m_{\mu\mu}\rangle/TeV)^2$$

[K. Zuber, PLB 479 (2000) 33; L. Littenberg, R. Shrock, PRB491 (2000) 285]

Analogously, neutrinoless double beta decay rate is $\sim \langle m_{ee} \rangle^2$.

 $\langle m_{||}\rangle = |\Sigma m_i U^2{}_{|i}|$ is the effective Majorana neutrino mass

E. Goudzovski / Moriond EW / 16 March 2011

Best upper limits on LFV/LNV decays $K_{\pi ee}$, $K_{\pi \mu \mu}$, $K_{\pi \mu e}$ come from BNL E865.

The E865 $K_{\pi\mu\mu}$ limit, based on a (short) special run, is the weakest: BR<3×10⁻⁹.

→ NA48 is competitive for $K_{\pi\mu\mu}$ mode: ~8 times larger data sample (K[±]).

- Combined experimental precision on $R_K = BR(K_{e2})/BR(K_{\mu2})$ has improved by an order of magnitude over the last 3 years, but is still an order of magnitude behind that of the SM prediction.
- R_{K} experiment and SM currently agree at 0.8σ level.
- Short (medium) term plans at NA62: improvement of the experimental uncertainty on R_K to 0.4% (0.2%) exploiting the decay-in-flight technique.
- Upper limit on LNV BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+})$ improved by a factor of 3: BR<1.1×10⁻⁹ $\rightarrow \langle m_{\mu\mu} \rangle$ <300 GeV at 90% CL.

Other recent CERN NA48/NA62 results: S.Balev @ La Thuile 2011; B.Bloch-Devaux @ Moriond QCD 2011