

Aimee Larner University of Oxford

On behalf of the ATLAS collaboration

Rencontres de Moriond EW 2011, La Thuile, Italy 13th March – 20th March

LHC 27 km

Motivation

Why Z $\rightarrow \tau \tau$?

- Re-observe Standard Model processes such as $Z \rightarrow \tau \tau$ to demonstrate understanding of detector
- Measure this important background to many new physics searches such as:
 - Higgs bosons in particular $H \rightarrow \tau \tau$
 - Supersymmetry
 - Exotic Scenarios
- Allows us to do performance tau lepton studies by triggering on electron and muon tau decay products

First Step:

• This observation of $Z \rightarrow \tau_I \tau_h$ Decays with the ATLAS Detector has been performed at $\sqrt{s} = 7$ TeV with 8.3 pb⁻¹ and 8.5 pb⁻¹ in the electron channel and muon channels respectively

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-010/

Require one leptonic tau decay Require one hadronic tau decay Trigger on single lepton

Main Backgrounds:

- W+jets
- Multijets
- $Z \rightarrow ee, Z \rightarrow \mu\mu$

μ

Require one isolated lepton passing tight identification requirements with transverse momentum > 15 GeV

Hadronic Tau Decay:

τjet

UNIVERSITY OF OXFORD

Require energy deposit in calorimeter Matching to 1 or 3 tracks Passes tight hadronic tau identification Has transverse energy > 15 GeV

ē, μ, d

Electron: arXiv:1010.2130 Muon: ATLAS-CONF-2010-036 Tau: ATLAS-CONF-2010-086

Leptonic Tau Decay:

Lepton Isolation

Two Isolation Variables:

 $Iso_{PT}^{0.4}$

Sum of transverse momentum of associated **tracks** to charged particles in a cone of $\Delta R = 0.4$

 $Iso_{ET}^{\Delta R}$

Sum of transverse energy of particles in calorimeter in a cone of $\Delta R = 0.4$ around muon or $\Delta R = 0.3$ around electron

10⁴ Events / 0.02 ATLAS dt L = 8.5 pt Preliminarv 10^{3} 10² √s = 7 TeV Data 2010 Multijet → u u 10 $\rightarrow \tau \tau$ 10 0.1 0.2 0.3 0.4 0.5 0.6 Iso^{0.4}

Best discriminator against multijet background

 φ is measured around the beam axis and the polar angle θ is the angle from the beam axis

$$\eta = -\ln \tan(\theta/2)$$
 and $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

Muon channel

W+jets Background

Variable 1:
$$\sum \cos \Delta \phi = \cos (\phi(\ell) - \phi(E_{\mathrm{T}}^{\mathrm{miss}})) + \cos (\phi(\tau_{\mathrm{h}}) - \phi(E_{\mathrm{T}}^{\mathrm{miss}}))$$

Variable 2: $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) = \sqrt{2} p_{\rm T}(\ell) \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi(\ell, E_{\rm T}^{\rm miss}))$

W Boson Control Region :

Obtained by reversing cuts on variables 1 and 2 Normalisation factor for Monte Carlo Simulation k_w measured from data

Further event cuts:

Opposite charge tau and lepton Visible Mass window cut on invariant tau and lepton mass

Multijet Background Estimation - Data driven method **OXFORD**

0.5

Electron channel

1.5

Iso^{0.3}

Other backgrounds:

UNIVERSITY OF

 $N_{\rm QCD}^A = \left\{ \right.$

"Loose"

and not

"Tight"

Tau ID

"Tight"

Tau ID

- Z \rightarrow ee, Z \rightarrow µµ and tt taken from simulation
- W+jets normalised to data

Aimee Larner

Iso^{0.4}

Muon channel

Observation

Aimee Larner

Backup Slides

W+jets Background - Angular variable

Variable 1:

 $\sum \cos \Delta \phi = \cos \left(\phi(\ell) - \phi(E_{\rm T}^{\rm miss}) \right) + \cos \left(\phi(\tau_{\rm h}) - \phi(E_{\rm T}^{\rm miss}) \right)$

- Stability of R_{OSSS} was tested against isolation variables and systematic uncertainty assigned
- This method was statistically limited

Estimations for both methods are in statistical agreement

Cut Flow - Muon channel

	data	$Z \rightarrow \tau \tau$	Multijets	$W \rightarrow \mu \nu$	$W \rightarrow \tau \nu$	$Z \rightarrow \mu \mu$	tī
object selection	574	59(2)	78(3)	268(4)	25(1)	83.8(9)	25.9(3)
dilepton veto	522	58(2)	78(3)	267(4)	25(1)	33.7(6)	20.7(3)
W suppression cuts	173	52(2)	58(2)	33(1)	11.2(8)	12.7(3)	5.2(1)
$m_{\rm vis} = 35 - 75 {\rm GeV}$	91	46(2)	32(2)	6.3(6)	3.1(4)	4.2(2)	0.89(6)
$N_{\rm trk}(\tau_{\rm h}) = 1 \text{ or } 3, Q(\tau_{\rm h}) = 1$	55	40(2)	10(1)	2.1(4)	0.9(2)	2.7(2)	0.37(4)
opposite sign	51	40(2)	5.2(7)	1.2(3)	0.8(2)	2.4(2)	0.28(3)

Numbers of events passing the cumulative event selections for the muon channel. Only statistical errors are given in parentheses. The predictions for signal, $Z \rightarrow \mu\mu$ and tt are taken from Monte Carlo normalized to 8.5 pb⁻¹

Cut Flow - Electron channel

	data	$Z \rightarrow \tau \tau$	Multijet	$W \rightarrow ev$	$W \rightarrow \tau v$	$Z \rightarrow ee$	tī
object selection	524	38(2)	109(3)	243(4)	18(1)	82.9(9)	21.6(3)
dilepton veto	485	37(2)	108(3)	243(4)	18(1)	48.9(7)	17.4(3)
W suppression cuts	163	33(2)	77(2)	34(2)	7.9(7)	26.5(5)	4.2(1)
$m_{\rm vis} = 35 - 75 { m ~GeV}$	76	28(2)	40(2)	7.3(7)	1.7(3)	5.4(2)	0.72(5)
$N_{\rm trk}(\tau_{\rm h}) = 1 \text{ or } 3, Q(\tau_{\rm h}) = 1$	33	25(2)	12.8(9)	2.9(5)	0.5(2)	2.6(2)	0.25(3)
opposite sign	29	25(2)	6.8(6)	2.3(4)	0.5(2)	1.9(1)	0.20(3)

Numbers of events passing the cumulative event selections for the electron channel. Only statistical errors are given in parentheses. The predictions for signal, $Z \rightarrow ee$ and tt are taken from Monte Carlo normalized to 8.3 pb⁻¹

Systematics

– Muon channel

Systematic	Uncertainty	Multijets	W+jets	Z & tī	$Z \rightarrow \tau \tau$
μ efficiency	2.7%	±0.03*	-	±0.07	±1.1
μ trigger efficiency	2.0%	±0.01*	-	±0.05	±0.8
μ isolation	1.6%	±0.01*	-	±0.04	±0.7
Jet τ fake rate	50%	±0.17*	-	±1.34	-
Energy scale	13% $(W \rightarrow \mu \nu) / 16\% (W \rightarrow \tau \nu)$	±0.26*	±0.28	±0.40	±2.4
	6% (signal) / 13% (Z) / 21% (tt)				
Pile-up re-weighting	0.5% (signal) / 0.58% (tt)	±0.01*	-	±0.10	±0.2
	3.9% (Z)				
MC underlying event model	7%	±0.04*	-	-	±2.8
MC showering model	6%	±0.04*	-	-	±2.4
Luminosity	11%	±0.07*	-	±0.30	± 4.4
Theoretical cross section	5% (Z)	±0.03*	-	±0.12	±2.0
	6% (<i>tī</i>)	±0.01*	-	±0.02	-
W rescaling factor	8.8% in <i>A</i> , <i>B</i>	±0.04*	±0.17	-	-
U	2.1% in <i>C</i> , <i>D</i>	-	-	-	-
Multijet est. (bkg subtraction)	-	±0.34	-	-	-
Multijet est. (method systematics)	-	±0.56	-	-	-
Total systematics	-	±0.66	±0.33	±1.44	±6.7

Summary of the sources of systematic uncertainty considered, the uncertainty used, and their effect on the background event estimates as well as on the expected signal (last column), for the muon channel. Most effects only enter indirectly in the multijet estimate, through the background subtraction in the control regions – these entries are labelled with an asterisk.

Aimee Larner

Systematics

– Electron channel

Systematic	Uncertainty	Multijets	W+jets	Z & tī	$Z \rightarrow \tau \tau$
e efficiency	η , p_T dependent	±0.1*	-	±0.25	±4.7
e trigger efficiency	1%	±0.01*	-	±0.02	±0.2
e isolation	p_T dependent	±0.15*	-	±0.17	±3.7
$e \tau$ fake rate	33.5%	$\pm 0.19^{*}$	-	±0.65	-
Jet τ fake rate	50%	±0.29*	-	±1.07	-
Energy scale	13% $(W \rightarrow ev) / 12\% (W \rightarrow \tau v)$	±0.28*	±0.36	±0.28	±1.7
	7% (signal) / 13% (Z) /15% (tt)				
Pile-up re-weighting	0.5% (signal) / 0.58% (tt)	±0.01*	-	±0.03	±0.1
	1.3% (Z)	-	-	-	-
MC underlying event model	8%	±0.03*	-	-	±2.0
MC showering model	13%	±0.05*	-	-	±3.2
Luminosity	11%	±0.07*	-	±0.24	±2.7
Theoretical cross section	5% (Z)	±0.03*	-	±0.10	±1.2
	6% (<i>tt</i>)	±0.01*	-	±0.01	-
W rescaling factor	8.7% in A, B	$\pm 0.04^{*}$	±0.24	-	-
	3.1% in C, D	-	-	-	-
Multijet est. (bkg subtraction)	-	±0.47	-	-	-
Multijet est. (method systematics)	-	±0.44	-	-	-
Total systematics	-	±0.65	±0.43	±1.35	±7.9

Summary of the sources of systematic uncertainty considered, the uncertainty used, and their effect on the background event estimates as well as on the expected signal (last column), for the electron channel. Most effects only enter indirectly in the multijet estimate, through the background subtraction in the control regions – these entries are labelled with an asterisk.

Missing Transverse Energy

