What if the LHC does not find Supersymmetry (here: mSUGRA) by the end of 2011/2012?

Philip Bechtle, K. Desch, H. Dreiner, M. Krämer, B. O'Leary, C. Robens, B. Sarrazin, P. Wienemann

March 15th 2011 Rencontres de Moriond

1 Introduction and Methods

2 Fit Results

Model Independent Data from LHC, Model Dependent Fits

Introduction and Methods

2 Fit Results

3 Model Independent Data from LHC, Model Dependent Fits

e.g. arXiv:0907.2589 [hep-ph]

- Does the non-observation of SUSY in the 2010 LHC searches agree with mSUGRA?
- If mSUGRA-like SUSY is realized, can we expect to discover SUSY in 2011/2012?
- If not, what are the implications for mSUGRA/SUSY and for Collider Physics?

Confronting LHC Searches with Precision Data

- See PB et al. arXiv:1102.4693 [hep-ph]: Frequentist Markov Chain Global Fit of mSUGRA using NLO+NLL/Herwig++ predictions
- Fit with Fittino hep-ph/0412012, using also SPheno hep-ph/0301101, theory codes collected in Mastercode arXiv:0907.5568 [hep-ph], and HiggsBounds arXiv:0811.4169 [hep-ph]
- See e.g. also

Buchmüller et al. arxiv:1102.3149 [hep-ph], Allanach arxiv:1102.4585 [hep-ph], Strumia arxiv:1101.2195 [hep-ph], Cassel et al. arXiv:1101.4664 [hep-ph] (list incomplete, just a snapshot)

 Many activities converging in LPCC meetings (e.g. http://indico.cern.ch/categoryDisplay.py?categId=2689) and many interesting discussions in the Terascale Alliance http://www.terascale.de/research_topics/rt1_physics_analysis/ susy__bsm_fit_working_group/

Confronting LHC Searches with Precision Data

- Multi-Messenger: Combine Information about SUSY from different sources
- $\bullet\,$ For LHC: Do not only use the 95 % CL as a brick wall, but calculate $\Delta\chi^2$

Implementation of an LHC Limit Projection

- Using the open parametrized detector simulation tool DELPHES arXiv:0903.2225 [hep-ph]
- Careful tuning against public ATLAS full simulation
- Implement the 4jet+MET cuts from atl-pub-phys-2010-010 and generate a grid in ($\Delta M_{1/2} = 25 \,\mathrm{GeV}, \Delta M_0 = 50 \,\mathrm{GeV}$)
- Use a bilinear interpolation to obtain the resulting M_{eff} spectrum

Systematic Check of the MSUGRA Parameter Grid

- Variations of the signal shape for different $\tan\beta$ and A_0 covered by systematic uncertainty
- This is specific for the 0ℓ search more complicated grids would be necessary for other searches
- Based on the full M_{eff} distribution, calculate CL_{s+b} for the median background hypothesis
- Transfer CL_{s+b} into $\chi^2 = 2[\operatorname{erf}^{-1}(1-2 \ CL_{s+b})]^2$

Introduction and Methods

3 Model Independent Data from LHC, Model Dependent Fits

Introduction and Methods

Fit Results

Model Independent Data from LHC. Model Dependent Fits

Pre-LHC knowledge about mSUGRA/CMSSM

mellen			
MSUGR	A fit to LE		
m,	172.4 ± 1.2	172.4	
m _b	$\textbf{4.2} \pm \textbf{0.17}$	4.2	
m ₇	91.1875 ± 0.0021	91.1871	
α	$\textbf{0.1176} \pm \textbf{0.0020}$	0.1177	
G _F	1.16637 10 ⁻⁵ ± 10 ⁻¹⁰	1.16637 10 ⁻⁵	
0 ⁻¹ em	$\textbf{127.925} \pm \textbf{0.016}$	127.924	
m _h >	114.4	113.3	
0 bad	$\textbf{41.54} \pm \textbf{0.04}$	41.48	
A ^{TD⁻}	$\textbf{0.01714} \pm \textbf{0.00095}$	0.01644	
A _τ	$\textbf{0.1465} \pm \textbf{0.0032}$	0.1480	
A ₁	$\textbf{0.1513} \pm \textbf{0.0021}$	0.1480	
Ac	$\textbf{0.67} \pm \textbf{0.027}$	0.67	
A _b	$\textbf{0.923} \pm \textbf{0.02}$	0.935	
A _c ^{fb}	$\textbf{0.0707} \pm \textbf{0.0035}$	0.0742	
A ^{fb} _b	$\textbf{0.0992} \pm \textbf{0.0016}$	0.1038	
R _c	0.1721 ± 0.003	0.1722	
R _b	$\textbf{0.21629} \pm \textbf{0.00066}$	0.21604	
R,	$\textbf{20.767} \pm \textbf{0.025}$	20.746	
Γz	2495.2 ± 2.51	2495.1	
sin0 _{eff}	$\textbf{0.2324} \pm \textbf{0.0012}$	0.2314	
mw	$\textbf{80.399} \pm \textbf{0.027}$	80.380	
Ω _{DM}	0.1099 ± 0.0135	0.1115	
(g-2)	3.02 10 ⁻⁹ ± 9.0 10 ⁻¹⁰	2.55 10 ⁻⁹	
BR(b→ sγ)	1.117 ± 0.122	1.009	
BR($b \rightarrow \tau v$)	$\textbf{1.15} \pm \textbf{0.4}$	0.96	
$\text{BR(B}_{\text{s}} \rightarrow \text{X}_{\text{s}}\text{II}\text{)}$	$\textbf{0.99} \pm \textbf{0.32}$	0.99	
BR(K→ Iv)	1.008 ± 0.014	1.000	
$\Delta_{m_{\kappa}}$	$\textbf{0.92} \pm \textbf{0.14}$	1.03	
∆(m _s)	1.11±0.32	1.03	
$\Delta_{m_d} / \Delta_{m_d}$	$\textbf{1.09} \pm \textbf{0.16}$	1.00	
			01
			(Moas "F

 mSUGRA Fit to measured observables

Projection: Low Energy Fit vs. Present and Future (?) LHC Exclusion

• Projection of how the LHC exclusion potential would evolve during the 7 TeV run compared to the LE data preferred region:

P. Bechtle: mSUGRA Fits with LHC Moriond EW 15.03.2011

Combined Fit of real LE Data and Estimated Present ATLAS Exclusion

• Not surprisingly: Combined Fit allows a small area below LHC exclusion

Combined Fit of real LE Data and Estimated Present ATLAS Exclusion

• Not surprisingly: Combined Fit allows a small area below LHC exclusion

Outlook for the Coloured Sector

• Not so strongly model dependent

Outlook for the Non-Coloured Sector

• Strongly model dependent

Is there a Tension Building Up?

 LE prefers low mass scales (for non-coloured sector), LHC prefers high mass scales (for coloured sector)

$\mathcal{L}^{int}/\mathrm{fb}^{-1}$	$\chi^2/$ ndf	$\mathcal{P}-V$ alue
0	18.9/20	53.1 %
0.035	20.4/21	49.8 %
1	23.7/21	30.9 %
2	24.2/21	28.3 %
7	25.0/21	24.6 %

• Using the present systematic uncertainties on the background estimation (and ignoring fine-tuning), even mSUGRA will survive the 2011/2012 run.

You may not find the model too attractive anymore, but that's an entirely different question

Introduction and Methods

2 Fit Results

Model Independent Data from LHC, Model Dependent Fits

- Higgs Searches (at least at LEP) could be presented in terms of S_{95} for each signature separately, because the signatures can be nicely isolated experimentally: $hZ \rightarrow b\bar{b}\ell\ell$, $hA \rightarrow b\bar{b}b\bar{b}...$
- Higgs: Only very few parameters: $m_h, m_A, \cos^2(\beta \alpha)$, model-independent comparison with all possible models e.g. in PB et al. arXiv:0811.4169 [hep-ph]
- SUSY: incredibly complicated signatures possible, many masses and relations of couplings

Why SUSY is different than e.g. the Higgs-Sector

	Signal region A
QCD	$7^{+8}_{-7}[u+j]$
W+jets	$50 \pm 11[u] {}^{+14}_{-10}[j] \pm 5[\mathcal{L}]$
Z+jets	$52 \pm 21[u] {}^{+15}_{-11}[j] \pm 6[\mathcal{L}]$
$t\bar{t}$ and t	$10 \pm 0[u] + \frac{3}{2}[j] \pm 1[\mathcal{L}]$
Total SM	$118 \pm 25[u] {}^{+32}_{-23}[j] \pm 12[\mathcal{L}]$
Data	87

- Higgs Searches (at least at LEP) could be presented in terms of S_{95} for each signature separately, because the signatures can be nicely isolated experimentally: $hZ \rightarrow b\bar{b}\ell\ell$, $hA \rightarrow b\bar{b}b\bar{b}\ldots$
- Higgs: Only very few parameters: $m_h, m_A, \cos^2(\beta \alpha)$, model-independent comparison with all possible models e.g. in PB et al. arXiv:0811.4169 [hep-ph]
- SUSY: incredibly complicated signatures possible, many masses and relations of couplings

Why SUSY is different than e.g. the Higgs-Sector

- Higgs Searches (at least at LEP) could be presented in terms of S_{95} for each signature separately, because the signatures can be nicely isolated experimentally: $hZ \rightarrow b\bar{b}\ell\ell$, $hA \rightarrow b\bar{b}b\bar{b}\ldots$
- Higgs: Only very few parameters: $m_h, m_A, \cos^2(\beta \alpha)$, model-independent comparison with all possible models e.g. in PB et al. arXiv:0811.4169 [hep-ph]
- SUSY: incredibly complicated signatures possible, many masses and relations of couplings

Other Approaches to Parametrizations of Searches

• Obvious: For model independent results, everything has to be presented in terms of (pseudo)observables (e.g. *M_{eff}*, masses, couplings, . . .)

Other Approaches to Parametrizations of Searches

- Obvious: For model independent results, everything has to be presented in terms of (pseudo)observables (e.g. *M_{eff}*, masses, couplings, . . .)
- 95% CL Limit on $\sigma \times \prod_i \mathcal{B}_i$ for a given signature
 - 95 % CL not very useful for global fits \rightarrow need full CL_{s+b} space
 - Very high dimensional binning would be needed (many masses)
 - Can any given signature be isolated experimentally? If yes (e.g. $\ell\ell$ egde), much less sensitive for discovery or exclusion
- $\bullet~95\,\%$ CL Limit on the number of events for a given selection
 - Simulation needed to determine number of events for any model prediction
- Distributions of *b*, *d* in discriminating variables corrected for detector effects, acceptances
 - Sounds nice, but probably impossible: Correction depends on many factors (many masses, couplings)
- 95 % CL Limit on "Simplified Model": see CL above, + not (yet?) proven that for each model point in a global fit there is a matching simplified model.

Conclusion Based on Our Experience

- As obviously already done here and in many other approaches, and in the first papers by ATLAS and CMS: Publish distributions of *b*, *d* in any discriminating variable/regions not corrected for any detector effects or acceptances
- Determine s from a simulation for every model in an appropriate way
- Use very fast rate calculations (e.g. Dreiner et al. arXiv:1003.2648) to check parameter space for the necessary grid dimensions and spacing

Conclusion Based on Our Experience

- As obviously already done here and in many other approaches, and in the first papers by ATLAS and CMS: Publish distributions of *b*, *d* in any discriminating variable/regions not corrected for any detector effects or acceptances
- Determine s from a simulation for every model in an appropriate way
- Use very fast rate calculations (e.g. Dreiner et al. arXiv:1003.2648) to check parameter space for the necessary grid dimensions and spacing
- Significant challenges:
 - Probably cannot produce MC for every point tested in the fit parametrization in N-dimensional grid
 - Need reliable simulation within $\mathcal{O}(syst)$

Conclusion Based on Our Experience

- As obviously already done here and in many other approaches, and in the first papers by ATLAS and CMS: Publish distributions of *b*, *d* in any discriminating variable/regions not corrected for any detector effects or acceptances
- Determine s from a simulation for every model in an appropriate way
- Use very fast rate calculations (e.g. Dreiner et al. arXiv:1003.2648) to check parameter space for the necessary grid dimensions and spacing
- Significant challenges:
 - Probably cannot produce MC for every point tested in the fit parametrization in N-dimensional grid
 - Need reliable simulation within $\mathcal{O}(syst)$
 - Very personal addition:

The Power of Open Source ATLAS and CMS could release officially endorsed, public, fast simulation tools

Conclusion and Outlook

- It is possible to reconcile the LE measurements (dominated by $(g-2)_{\mu}$ and Ω_{DM}) with a possible non-discovery of mSUGRA at the LHC in 2011/2012
- As expected, LHC generally moves the lower bounds on sparticles to higher values (directly true only for coloured ones)
- As expected, but less obvious: As long as global fit χ^2/ndf remain acceptable: LHC moves up the upper bound on sparticles very significantly
- For other SUSY than mSUGRA, the coloured and non-coloured sector can be more decoupled, no definite statements on non-coloured sector yet
- Outlook:
 - Use real search results as input
 - Study more, and more general, models

Conclusion and Outlook

- It is possible to reconcile the LE measurements (dominated by $(g-2)_{\mu}$ and Ω_{DM}) with a possible non-discovery of mSUGRA at the LHC in 2011/2012
- As expected, LHC generally moves the lower bounds on sparticles to higher values (directly true only for coloured ones)
- As expected, but less obvious: As long as global fit χ^2/ndf remain acceptable: LHC moves up the upper bound on sparticles very significantly
- For other SUSY than mSUGRA, the coloured and non-coloured sector can be more decoupled, no definite statements on non-coloured sector yet
- Outlook:
 - Use real search results as input
 - Study more, and more general, models
 - Find and Identify New Physics

Backup Slides

Agreement of our Implementation with the Actual ATLAS Analysis with Data

Full Results for no LHC

Full Results for $35 \,\mathrm{pb}^{-1}$ ATLAS Search

Full Extrapolated Results for $1 \, {\rm fb}^{-1}$ ATLAS Search

Full Extrapolated Results for $2 \, \mathrm{fb}^{-1}$ ATLAS Search

Full Extrapolated Results for $7 \, \text{fb}^{-1}$ ATLAS Search

Why are global fits of SUSY so CPU-consuming?

- ... and impossible with naively employing Minuit?
 - Looking at any correlations for all other allowed parameters:

Why are global fits of SUSY so CPU-consuming?

• ... and impossible with naively employing Minuit?

Looking at any correlations for fixed other parameters:

Looks Terrible

Why are global fits of SUSY so CPU-consuming?

• ... and impossible with naively employing Minuit?

Looking at any correlations for regions of other parameters:

Correlations growing for higher mass parameters

Search Cuts

Number of jets	\geq 2 jets	\geq 3 jets	\geq 4 jets
Leading jet P_T (GeV)	> 180	> 100	> 100
Other jets P_T (GeV)	> 50 (Jet 2)	> 40 (Jet 2-3)	> 40 (Jet 2-4)
$\Delta \phi(jet_i, E_T^{miss})$	[>0.2,>0.2]	[>0.2,>0.2,>0.2]	[>0.2,>0.2,>0.2,>0.2]
$E_T^{miss} > f \times M_{\rm eff}$	f = 0.3	f = 0.25	f = 0.2

Table 1: Cuts on the P_T of the leading jet, the P_T of the other jets, the azimuthal angle between the leading jets and the missing transverse energy vector and the cut on the missing transverse energy expressed as a fraction of the effective mass. The cuts are shown for each of the studied jet multiplicities.

In the following we describe the event selection criteria for the 0, 1 and 2 lepton channels.

Zero-lepton channels In addition to the electron crack veto, the pre-selection cuts are:

- 1. Reject events with at least one lepton having $P_T > 20$ GeV.
- 2. Cut on the number of jets and jet transverse momenta as defined in Table 1.
- 3. Missing transverse energy $E_T^{miss} > 80$ GeV.
- 4. Cut on ratio f between E_T^{miss} and M_{eff} as defined in Table 1.
- 5. Cut on $\Delta \phi$ (*jet_i*, E_T^{miss}) as defined in Table 1.
- 6. Transverse sphericity, $S_T > 0.2$.

Calculating the χ^2 from LHC

$$Q = \prod_{i=1}^{N_{\text{bins}}} \frac{\mathcal{L}(\mu_i = s_i + b_i; n_i)}{\mathcal{L}(\mu_i = b_i; n_i)}.$$
 (1)

$$\operatorname{CL}_{s+b} = \int_{t_{\rm obs}}^{\infty} P_{s+b}(t) \, dt < 0.05 \,. \tag{2}$$

$$\chi^2 = 2[\operatorname{erf}^{-1}(1 - 2\operatorname{CL}_{s+b})]^2.$$
(3)

