

Combination of Standard Model Higgs Boson Searches at the Tevatron

Bodhitha Jayatilaka *Duke University* on behalf of the CDF and D0 Collaborations

46th Rencontres de Moriond: Electroweak Interactions and Unified Theories La Thuile, Italy

March 14, 2011

Introduction

- Tevatron is closing in on SM Higgs boson
- Extract as much as possible out of dataset
 - Cover as many possible production and decay channels as possible (see P. Totaro and K. Petridis talks)
 - Use multi-variate analysis methods
 - Combine these channels
 - Double dataset by combining CDF and D0
- Combination covers m_H=100 GeV/c² to 200 GeV/c²
 - "Low mass": all channels, $m_H < 150 \text{ GeV}/c^2$
 - Last updated summer 2010
 - "High mass": primarily $H \rightarrow WW$, m_H>130 GeV/ c^2
 - New for this conference

Channels considered: Summer 2010

CDF

56 mutually exclusive final states

Channel	Luminosity (fb^{-1})	m_H range (GeV/ c^2)
$WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $4 \times (TDT, LDT, ST, LDTX)$	5.7	100-150
$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $2 \times (TDT, LDT, ST)$	5.6	100-150
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (TDT,LDT,ST)	5.7	100-150
$ZH \rightarrow \ell^+ \ell^- b\bar{b} = 4 \times (\text{TDT,LDT,ST})$	5.7	100-150
$H \to W^+W^- = 2 \times (0,1 \text{ jets}) + (2 + \text{ jets}) + (\text{low-}m_{\ell\ell}) + (e - \tau_{had}) + (\mu - \tau_{had})$	5.9	110-200
$WH \rightarrow WW^+W^-$ (same-sign leptons 1+ jets)+(tri-leptons)	5.9	110-200
$ZH \rightarrow ZW^+W^-$ (tri-leptons 1 jet)+(tri-leptons 2+ jets)	5.9	110-200
$H + X \to \tau^+ \tau^-$ (1 jet)+(2 jets)	2.3	100-150
$WH + ZH \rightarrow jjb\bar{b}$ 2×(TDT,LDT)	4.0	100-150
$H o \gamma \gamma$	5.4	100-150

D0

73 mutually exclusive final states

Channel	Luminosity (fb^{-1})	m_H range (GeV/ c^2)
$WH \rightarrow \ell \nu b \overline{b}$ (ST,DT,2,3 jet)	5.3	100-150
$VH \to \tau^+ \tau^- b\bar{b}/q\bar{q}\tau^+\tau^-$	4.9	105 - 145
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (ST,TLDT)	5.2-6.4	100-150
$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ (ST,DT, $ee,\mu\mu,ee_{ICR},\mu\mu_{trk}$)	4.2-6.2	100-150
$VH \to \ell^{\pm}\ell^{\pm} + X$	5.3	115-200
$H \to W^+ W^- \to e^{\pm} \nu e^{\mp} \nu, \mu^{\pm} \nu \mu^{\mp} \nu$	5.4	115-200
$H \to W^+ W^- \to e^{\pm} \nu \mu^{\mp} \nu (0, 1, 2+ \text{ jet})$	6.7	115-200
$H \to W^+ W^- \to \ell \bar{\nu} j j$	5.4	130-200
$H \to \gamma \gamma$	4.2	100-150
$t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ (ST,DT,TT,4,5+ jets)	2.1	105-155

Channels considered: New (high mass)

CDF

12 mutually exclusive final states

Channel	Luminosity (fb^{-1})	m_H range (GeV/c^2)
$H \to W^+W^- = 2 \times (0,1 \text{ jets}) + (2 + \text{ jets}) + (\text{low-}m_{\ell\ell}) + (e - \tau_{had}) + (\mu - \tau_{had})$	7.1	110-200
$WH \to WW^+W^-$ (same-sign leptons 1+ jets)+(tri-leptons)	7.1	110-200
$ZH \to ZW^+W^-$ (tri-leptons 1 jet)+(tri-leptons 2+ jets)	7.1	110-200

D0

35 mutually exclusive final states

Channel	Luminosity (fb^{-1})	m_H range (GeV/c^2)
$H \to W^+ W^- \to l^{\pm} \nu l^{\mp} \nu (0, 1, 2+ \text{ jet})$	8.1	115-200
$H \to W^+ W^- \to \mu \nu \tau_{had} \nu$	7.3	115-200
$H \to W^+ W^- \to \ell \bar{\nu} j j$	5.4	115-200
$VH \to \ell^{\pm}\ell^{\pm} + X$	5.3	115-200
$VH \to \tau^+ \tau^- b\bar{b}/q\bar{q}\tau^+\tau^-$	5.3	105-200
$H \to \gamma \gamma$	8.2	100-150

Combining

- Perform combination using two techniques
 - Require agreement within 5% at each m_H and 2% on average
- Both methods
 - Use distribution of final discriminants
 - Poisson statistics in all bins
 - Systematics as nuisance parameters (133 in all!), determined from fit to data
- Method 1: Bayesian method
 - Based on credibility, using flat prior
- Method 2: Modified frequentist method
 - Uses CL_s method- compare b only and s+b hypotheses
 - Based on coverage

Systematics

- Systematics on signal and background estimates in two categories
 - Rate: affects overall normalization (e.g. tag uncertainty)
 - Shape: affects distribution (e.g. jet energy scale)
- Correlated between CDF and D0
 - Integrated luminosity (4% correlated, ~6% total)
 - Theoretical cross sections for signal and background (5-20%)
- Correlated amongst analyses of a single experiment
 - b-quark tagging efficiency uncertainty
 - Lepton selection efficiency
 - Jet energy scale
 - QCD ISR/FSR
 - Jet/missing E_T modeling
 - Background modeling

Cooperation, not competition

PRL 104, 061802 (2010)	Selected for a Viewpoint in <i>Physics</i> PHYSICAL REVIEW LETTERS	week ending 12 FEBRUARY 2010
	(Or	

 Prior Run 2 CDF+D0 combinations (e.g. m_{top}) performed after analyses

- complete and approved separately
- Higgs combinations approved in parallel with analyses
- Inputs shared when still "confidential"!
- We hope this spirit continues in the LHC era

Combination of Tevatron Searches for the Standard Model Higgs Boson in the W^+W^- Decay Mode

T. Aaltonen,^{15,*} V. M. Abazov,^{60,†} B. Abbott,^{128,†} M. Abolins,^{113,†} B. S. Acharya,^{35,†} M. Adams,^{91,†} T. Adams,^{87,†} J. Adelman,^{90,*} E. Aguilo,^{7,†} G. D. Alexeev,^{60,†} G. Alkhazov,^{64,†} A. Alton,^{111,†,gg} B. Álvarez González,^{68,*,y} G. Alverson,^{106,†} G. A. Alves,^{2,†} S. Amerio,^{41,40,*} D. Amidei,^{111,*} A. Anastassov,^{93,*} L. S. Ancu,^{59,†} A. Annovi,^{39,*} J. Antos,^{65,*} M. Aoki,^{89,†} G. Apollinari,^{89,*} J. Appel,^{89,*} A. Apresyan,^{98,*} T. Arisawa,^{53,*} Y. Arnoud,^{17,†} M. Arov,^{102,†} A. Artikov,^{60,*} J. Asaadi,^{135,*} W. Ashmanskas,^{89,*} A. Askew,^{87,†} B. Åsman,^{69,†} O. Atramentov,^{116,†} A. Attal,^{66,*} A. Aurisano,^{135,*} C. Avila,^{10,†} F. Azfar,^{77,*} J. BackusMayes,^{140,†} F. Badaud,^{16,†} W. Badgett,^{89,*} L. Bagby,^{89,†} B. Baldin,^{89,†} D. V. Bandurin,^{101,†} S. Banerjee,^{35,†} A. Barbaro-Galtieri,^{79,*} E. Barberis,^{106,†} A.-F. Barfuss,^{18,†} P. Baringer,^{100,†} V. E. Barnes, ^{98,*} B. A. Barnett, ^{103,*} J. Barreto, ^{2,†} P. Barria, ^{44,42,*} J. F. Bartlett, ^{89,†} P. Bartos, ^{65,*} U. Bassler, ^{21,†} D. Bauer, ^{74,†} G. Bauer,^{108,*} S. Beale,^{7,†} A. Bean,^{100,†} P.-H. Beauchemin,^{6,*} F. Bedeschi,^{42,*} D. Beecher,^{75,*} M. Begalli,^{3,†} M. Begel,^{124,†} S. Behari,^{103,*} C. Belanger-Champagne,^{69,†} L. Bellantoni,^{89,†} G. Bellettini,^{43,42,*} J. Bellinger,^{141,*} J. A. Benitez,^{113,†} D. Benjamin,^{125,*} A. Beretvas,^{89,*} S. B. Beri,^{33,†} G. Bernardi,^{20,†} R. Bernhard,^{26,†} I. Bertram,^{72,†} M. Besançon,^{21,†} R. Beuselinck,^{74,†} V. A. Bezzubov,^{63,†} P.C. Bhat,^{89,†} V. Bhatnagar,^{33,†} A. Bhatti,^{121,*} M. Binkley,^{89,*,a} D. Bisello,^{41,40,*} I. Bizjak,^{75,*,ff} R. E. Blair,^{88,*} G. Blazey,^{92,†} S. Blessing,^{87,†} C. Blocker,^{110,*} K. Bloom,^{115,†} B. Blumenfeld,^{103,*} A. Bocci,^{125,*} A. Bodek,^{122,*} A. Boehnlein,^{89,†} V. Boisvert,^{122,*} D. Boline,^{105,†} T. A. Bolton,^{101,†} E. E. Boos,^{62,†} G. Borissov,^{72,†} D. Bortoletto,^{98,*} T. Bose,^{105,†} J. Boudreau,^{132,*} A. Boveia,^{84,*} A. Brandt,^{134,†} B. Brau,^{84,*,b} A. Bridgeman,^{94,*} L. Brigliadori,^{38,37,*} R. Brock,^{113,†} C. Bromberg,^{113,*} G. Brooijmans,^{120,†} A. Bross,^{89,†} D. Brown,^{22,†} E. Brubaker,^{90,*} X. B. Bu,^{8,†} D. Buchholz,^{93,†} J. Budagov,^{60,*} H. S. Budd,^{122,*} S. Budd,^{94,*} M. Buehler,^{139,†} V. Buescher,^{29,†} V. Bunichev,^{62,†} S. Burdin,^{72,†,th} K. Burkett,^{89,*} T. H. Burnett,^{140,†} G. Busetto,^{41,40,*} P. Bussey,^{71,*} C.P. Buszello,^{74,†} A. Buzatu,^{6,*} K.L. Byrum,^{88,*} S. Cabrera,^{125,*,aa} C. Calancha,^{67,*} P. Calfayan,^{30,†} B. Calpas,^{18,†} S. Calvet,^{19,†} E. Camacho-Pérez,^{57,†} S. Camarda,^{66,*} J. Cammin,^{122,†} M. Campanelli,^{75,*} M. Campbell,^{111,*} F. Canelli,^{89,90,*} A. Canepa,^{130,*} B. Carls,^{94,*} D. Carlsmith,^{141,*} R. Carosi,^{42,*} M. A. Carrasco-Lizarraga,^{57,†} E. Carrera,^{87,†} S. Carrillo,^{86,*,0} S. Carron,^{89,*} B. Casal,^{68,*} M. Casarsa,^{89,*} B. C. K. Casey,^{89,†} H. Castilla-Valdez,^{57,†} A. Castro, ^{38,37,*} P. Catastini, ^{44,42,*} D. Cauz, ^{48,*} V. Cavaliere, ^{44,42,*} M. Cavalli-Sforza, ^{66,*} A. Cerri, ^{79,*} L. Cerrito, ^{75,*,s} S. Chakrabarti,^{123,†} D. Chakraborty,^{92,†} K. M. Chan,^{97,†} A. Chandra,^{95,†} S. H. Chang,^{54,*} Y. C. Chen,^{9,*} M. Chertok,^{80,*} E. Cheu,^{78,†} S. Chevalier-Théry,^{21,†} G. Chiarelli,^{42,*} G. Chlachidze,^{89,*} F. Chlebana,^{89,*} K. Cho,^{54,*} D. K. Cho,^{105,†} S. W. Cho, ^{55,†} S. Choi, ^{56,†} D. Chokheli, ^{60,*} J. P. Chou, ^{107,*} B. Choudhary, ^{34,†} T. Christoudias, ^{74,†} K. Chung, ^{89,*,p} W. H. Chung,^{141,*} Y. S. Chung,^{122,*} T. Chwalek,^{28,*} S. Cihangir,^{89,†} C. I. Ciobanu,^{20,*} M. A. Ciocci,^{44,42,*} D. Claes,^{115,†} A. Clark,^{70,*} D. Clark,^{110,*} J. Clutter,^{100,†} G. Compostella,^{40,*} M. E. Convery,^{89,*} J. Conway,^{80,*} M. Cooke,^{89,†} W. E. Cooper,^{89,†} M. Corbo,^{20,*} M. Corcoran,^{137,†} M. Cordelli,^{39,*} F. Couderc,^{21,†} M.-C. Cousinou,^{18,†} C. A. Cox,^{80,*} D. J. Cox,^{80,*} F. Crescioli,^{43,42,*} C. Cuenca Almenar,^{85,*} J. Cuevas,^{68,*,y} R. Culbertson,^{89,*} J. C. Cully,^{111,*} D. Cutts,^{133,†} M. Ćwiok, 36,† D. Dagenhart, 89,* N. d'Ascenzo, 20,*,x A. Das, 78,† M. Datta, 89,* G. Davies, 74,† T. Davies, 71,* K. De, 134,† P. de Barbaro,^{122,*} S. De Cecco,^{46,*} A. Deisher,^{79,*} S. J. de Jong,^{59,†} E. De La Cruz-Burelo,^{57,†} F. Déliot,^{21,†} M. Dell'Orso,^{43,42,*} G. De Lorenzo,^{66,*} C. Deluca,^{66,*} M. Demarteau,^{89,†} R. Demina,^{122,†} L. Demortier,^{121,*} J. Deng,^{125,*,g} M. Deninno,^{37,*} D. Denisov,^{89,†} S. P. Denisov,^{63,†} M. d'Errico,^{41,40,*} S. Desai,^{89,†} K. DeVaughan,^{115,†} A. Di Canto,^{43,42,*} H. T. Diehl,^{89,†} M. Diesburg,^{89,†} B. Di Ruzza,^{42,*} J. R. Dittmann,^{138,*} A. Dominguez,^{115,†} S. Donati,^{43,42,*} P. Dong,^{89,*} M. D'Onofrio,^{66,*} T. Dorigo,^{40,*} T. Dorland,^{140,†} S. Dube,^{116,*} A. Dubey,^{34,†} L. V. Dudko,^{62,†} L. Duflot,^{19,†} D. Duggan,^{116,†} A. Duperrin,^{18,†} S. Dutt,^{33,†} A. Dyshkant,^{92,†} <u>M. Eads</u>,^{115,†} K. Ebina,^{53,*} D. Edmunds,^{113,†} A. Elagin,^{135,*} J. Ellison,^{83,†} V. D. Elvira,^{89,†} Y. Enari,^{20,†} S. Eno,^{104,†} R. N. Ershaidat,^{20,*,ee} R. Eusebi,^{135,*} H. Evans,^{95,†} A. Evdokimov,^{124,†} V. N. E S. Farrington,^{77,*} W. T. Fedorko,^{90,*} R. G. Feild,^{85,*} M. Feindt,^{28,*} A J. P. Fernandez,^{67,*} C. Ferrazza,^{45,42,*} F. Fielder,^{29,†} R. Field,^{86,*} F. Fil PRL 104,061802 (2010) G. Flanagan, 98,*,u R. Forrest, 80,* M. Fortner, 92,† H. Fox, 72,† M. J. Frank,

Moriond EWK, 3/14/11

First CDF+DØ

publication in Run II

0031-9007/10/104(6)/061802(11)

S. Fuess,^{89,†} I. Furic,^{86,*} T. Gadfort,^{124,†} C. F. Galea,^{59,†} M. Gallinaro,

061802-1

J. E. Garcia,^{70,*} A. Garcia-Bellido,^{122,†} A. F. Garfinkel,^{98,*} P. Garosi,^{44,42}
W. Geng,^{18,113,†} D. Gerbaudo,^{117,†} C. E. Gerber,^{91,†} H. Gerberich,^{94,*} D. Ge S. Giagu,^{47,46,*} V. Giakoumopoulou,^{32,*} P. Giannetti,^{42,*} K. Gibson,¹¹

C. M. Ginsburg,^{89,*} G. Ginther,^{89,122,†} N. Giokaris,^{32,*} M. Giordani,^{49,48,*} P.

- Upper limit for $m_H=115 \text{ GeV}/c^2 \text{ of } 1.56 \times \sigma_{SM} @95\% \text{ CL}$
- Tevatron-only exclusion at 95% CL of 100 < $m_{\rm H}$ < 109 GeV/ c^2

Background subtracted data

- Subtract background model that has been fit to data
 - Independent of any assumed Higgs cross section
- No excess above background observed
 - Proceed to set a limit

Data distributions

• Rebin histograms of final discriminants for all channels in log(S/B)

New Tevatron Higgs Limits

- SM Higgs boson excluded at 95% CL for $158 < m_H < 173 \text{ GeV}$
- Expected exclusion at 95% CL for $153 < m_H < 179 \text{ GeV}$
 - Compare to summer 2010 expected exclusion of $156 < m_H < 173$ GeV

Another approach: CL_{s+b}

• Roughly comparable to Power constrained CL_{s+b} approach used by ATLAS

Just how excluded is it?

SM Higgs of 162 < m_H < 166 GeV excluded @99.5% CL

Conclusion

- Combination of all Tevatron searches has been performed
 - Up to 5.9 fb⁻¹ of data for $100 < m_H < 130$ GeV
 - Up to 8.2 fb⁻¹ of data for $130 < m_H < 200 \text{ GeV}$
- Tevatron results exclude at 95% CL
 - 100 < m_H < 109 GeV
 - 158 < m_H < 173 GeV
- Expected exclusion of $153 < m_H < 179 \text{ GeV}$
 - Up from 156 < m_H < 173 GeV
- Individual experiment exclusions now from both CDF and D0
- Tevatron exclusion now at 99.5% CL for some masses
- CDF and D0 strategies continue to be to leave the Higgs nowhere to hide
- End of Run 2 (this year) will leave ~10 fb⁻¹ of data for each experiment
 - As always, more analysis improvements are underway
 - Plenty left to do- expect new results soon!

Backup

LLR from CL_S method

Data distributions: low mass

Theoretical Issues

- Are we treating cross-section uncertainty due to scale variations ($\mu_R \& \mu_F$) correctly?
 - We obtain gluon fusion cross sections from:

D. de Florian, M. Grazzini, Phys. Lett. B674, 291-294 (2009).
[arXiv:0901.2427 [hep-ph]].
C. Anastasiou, R. Boughezal, F. Petriello, JHEP 0904, 003 (2009).
[arXiv:0811.3458 [hep-ph]].

- Use a scale variation factor of 2 from the central value to estimate impact of potential high-order contributions
- Authors confirm high-order effects are small
- Another recent publication argues for even smaller scale uncertainties

V. Ahrens, T. Becher, M. Neubert *et al.*, Eur. Phys. J. C62, 333-353 (2009). [arXiv:0809.4283 [hep-ph]];

V. Ahrens, T. Becher, M. Neubert et al., [arXiv:1008.3162 [hep-ph]].

• We feel our treatment is adequate, if not conservative, and generally supported by the theoretical community

- Do we need additional uncertainties assigned to our gluon fusion cross section resulting from EFT approach used to integrate loop contributions?
- Such an uncertainty is already included:

C. Anastasiou, R. Boughezal, F. Petriello, JHEP **0904**, 003 (2009). [arXiv:0811.3458 [hep-ph]].

- Uncertainties on gluon fusion cross sections used in our searches include ~2% to account for this
- Authors find entirely removing corrections from light quark diagrams changes the total cross section by less than 4%
- We feel our treatment of EFT effects is sound