Combination of Standard Model Higgs Boson Searches at the Tevatron

Bodhitha Jayatilaka
Duke University
on behalf of the CDF and D0 Collaborations
46th Rencontres de Moriond: Electroweak Interactions and Unified Theories La Thuile, Italy

March 14, 2011

Introduction

- Tevatron is closing in on SM Higgs boson
- Extract as much as possible out of dataset
- Cover as many possible production and decay channels as possible (see P. Totaro and K. Petridis talks)
- Use multi-variate analysis methods
- Combine these channels
- Double dataset by combining CDF and D0
- Combination covers $\mathrm{m}_{\mathrm{H}}=100 \mathrm{GeV} / \mathrm{c}^{2}$ to $200 \mathrm{GeV} / \mathrm{c}^{2}$
- "Low mass": all channels, $\mathrm{m}_{\mathrm{H}}<150 \mathrm{GeV} / \mathrm{c}^{2}$
- Last updated summer 2010
- "High mass": primarily $H \rightarrow W W, \mathrm{~m}_{\mathrm{H}}>130 \mathrm{GeV} / \mathrm{c}^{2}$
- New for this conference

Channels considered: Summer 2010

CDF

56 mutually exclusive final states

Channel	Luminosity (fb^{-1})	m_{H} range $\left(\mathrm{GeV} / c^{2}\right)$
WH $\rightarrow \ell \nu b b$ 2-jet channels $4 \times($ TDT,LDT,ST,LDTX)	5.7	100-150
$W H \rightarrow \ell \nu b \bar{b} 3$-jet channels $2 \times($ TDT,LDT,ST)	5.6	100-150
$Z H \rightarrow \nu \bar{\nu} b \bar{b} \quad$ (TDT,LDT,ST)	5.7	100-150
$Z H \rightarrow \ell^{+} \ell^{-} b \bar{b} \quad 4 \times($ TDT,LDT,ST)	5.7	100-150
$H \rightarrow W^{+} W^{-} \quad 2 \times(0,1$ jets $)+(2+$ jets $)+\left(\right.$ low- $\left.m_{\ell \ell}\right)+\left(e-\tau_{\text {had }}\right)+\left(\mu-\tau_{\text {had }}\right)$	5.9	110-200
$W H \rightarrow W W^{+} W^{-} \quad$ (same-sign leptons $1+$ jets) + (tri-leptons)	5.9	110-200
$Z H \rightarrow Z W^{+} W^{-} \quad$ (tri-leptons 1 jet) + (tri-leptons $2+$ jets)	5.9	110-200
$H+X \rightarrow \tau^{+} \tau^{-} \quad(1$ jet $)+(2$ jets $)$	2.3	100-150
$W H+Z H \rightarrow j j b \bar{b} \quad 2 \times($ TDT,LDT $)$	4.0	100-150
$H \rightarrow \gamma \gamma$	5.4	100-150

73 mutually exclusive final states

Channel	Luminosity $\left(\mathrm{fb}^{-1}\right)$	m_{H} range $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$
$W H \rightarrow \ell \nu b b$ (ST,DT,2,3 jet)	5.3	$100-150$
$V H \rightarrow \tau^{+} \tau^{-} b \bar{b} / q \bar{q} \tau^{+} \tau^{-}$	4.9	$105-145$
$Z H \rightarrow \nu \bar{\nu} b \bar{b} \quad$ (ST,TLDT)	$5.2-6.4$	$100-150$
$Z H \rightarrow \ell^{+} \ell^{-} b \bar{b}$ (ST,DT, $\left.e e, \mu \mu, e e_{I C R}, \mu \mu_{t r k}\right)$	$4.2-6.2$	$100-150$
$V H \rightarrow \ell^{ \pm} \ell^{ \pm}+X$	5.3	$115-200$
$H \rightarrow W^{+} W^{-} \rightarrow e^{ \pm} \nu e^{\mp} \nu, \mu^{ \pm} \nu \mu^{\mp} \nu$	5.4	$115-200$
$H \rightarrow W^{+} W^{-} \rightarrow e^{ \pm} \nu \mu^{\mp} \nu \quad(0,1,2+$ jet)	6.7	$115-200$
$H \rightarrow W^{+} W^{-} \rightarrow \ell \bar{\nu} j j$	5.4	$130-200$
$H \rightarrow \gamma \gamma$	4.2	$100-150$
$t \bar{t} H \rightarrow t \bar{t} b \bar{b} \quad$ (ST,DT,TT,4,5+ jets)	2.1	$105-155$

Channels considered: New (high mass)

CDF

12 mutually exclusive final states

Channel	Luminosity $\left(\mathrm{fb}^{-1}\right)$	m_{H} range $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	
$H \rightarrow W^{+} W^{-}$	$2 \times(0,1$ jets $)+(2+$ jets $)+\left(\right.$ low- $\left.m_{\ell \ell}\right)+\left(e-\tau_{\text {had }}\right)+\left(\mu-\tau_{\text {had }}\right)$	7.1	$110-200$
$W H \rightarrow W W^{+} W^{-}$	(same-sign leptons 1+ jets) + (tri-leptons)	7.1	$110-200$
$Z H \rightarrow Z W^{+} W^{-}$	(tri-leptons 1 jet) + (tri-leptons 2+ jets)	7.1	$110-200$

D0

35 mutually exclusive final states

Channel	Luminosity $\left(\mathrm{fb}^{-1}\right)$	m_{H} range $\left(\mathrm{GeV} / c^{2}\right)$
$H \rightarrow W^{+} W^{-} \rightarrow l^{ \pm} \nu l^{\mp} \nu$	$(0,1,2+$ jet $)$	8.1
$H \rightarrow W^{+} W^{-} \rightarrow \mu \nu \tau_{h a d} \nu$	7.3	$115-200$
$H \rightarrow W^{+} W^{-} \rightarrow \ell \bar{\nu} j j$	5.4	$115-200$
$V H \rightarrow \ell^{ \pm} \ell^{ \pm}+X$	5.3	$115-200$
$V H \rightarrow \tau^{+} \tau^{-} b \bar{b} / q \bar{q} \tau^{+} \tau^{-}$	5.3	$115-200$
$H \rightarrow \gamma \gamma$	8.2	$105-200$

Combining

- Perform combination using two techniques
- Require agreement within 5% at each m_{H} and 2% on average
- Both methods
- Use distribution of final discriminants
- Poisson statistics in all bins
- Systematics as nuisance parameters (133 in all!), determined from fit to data
- Method 1: Bayesian method
- Based on credibility, using flat prior
- Method 2: Modified frequentist method
- Uses CLs method- compare b only and s+b hypotheses
- Based on coverage

Systematics

- Systematics on signal and background estimates in two categories
- Rate: affects overall normalization (e.g. tag uncertainty)
- Shape: affects distribution (e.g. jet energy scale)
- Correlated between CDF and DO
- Integrated luminosity (4\% correlated, ~6\% total)
- Theoretical cross sections for signal and background (5-20\%)
- Correlated amongst analyses of a single experiment
- b-quark tagging efficiency uncertainty
- Lepton selection efficiency
- Jet energy scale
- QCD ISR/FSR
- Jet/missing Eт modeling
- Background modeling

Cooperation, not competition

- Prior Run 2 CDF+D0 combinations (e.g. mop performed after analyses complete and approved separately
- Higgs combinations approved in parallel with analyses
- Inputs shared when still "confidential"!
- We hope this spirit continues in the LHC era

PRL 104, 061802 (2010)

lel Selected for a Viewpoint in Physics
${ }_{2}{ }_{2}$ Week ending

Combination of Tevatron Searches for the Standard Model Higgs Boson in the $\boldsymbol{W}^{+} \boldsymbol{W}^{-}$Decay Mode
 G. Alverson, ${ }^{106, \dagger}$ G. A. Alves, ${ }^{2, \dagger}$ S. Amerio, ${ }^{41,40, *}$ D. Amidei, ${ }^{11, *}$ A. Anastassov, ${ }^{93, *}$ L. S. Ancu, ${ }^{59, \uparrow}$ A. Annovi, ${ }^{19, *}$ J. Antos, ${ }^{65, *}$ M. Aoki, ${ }^{89,7}$ G. Apollinari, ${ }^{89, *}$ J. Appel, ${ }^{89, *}$ A. Apresyan, ${ }^{88, *}$ T. Arisawa, ${ }^{53, *}$ Y. Arnoud, ${ }^{17, \uparrow}$ M. Arov, ${ }^{102,{ }^{1}}$
 A. Aurisano, ${ }^{135, *}$ C. Avila, ${ }^{10, \dagger}$ F. Azfar, $77, *$ J. BackusMayes, ${ }^{140, \dagger}$ F. Badaud, ${ }^{16, \uparrow}$ W. Badgett, ${ }^{89, *}$ L. Bagby, ${ }^{89, \dagger}$ B. Baldin, ${ }^{89,7}$ D. V. Bandurin, ${ }^{101, \uparrow}$ S. Banerjee, ${ }^{35, \uparrow}$ A. Barbaro-Galtieri, ${ }^{79, *}$ E. Barberis ${ }^{106, \uparrow}$ A.-F. Barfuss, ${ }^{18,7}$ P. Baringer, ${ }^{100, \uparrow}$ V.E. Barnes, ${ }^{98, *}$ B. A. Barnett, ${ }^{103, *}$ J. Barreto, ${ }^{2, \dagger}$ P. Barria, ${ }^{44,42, *}$ J. F. Bartlett, ${ }^{89, \uparrow}$ P. Bartos, ${ }^{65, *}$ U. Bassler, ${ }^{21, \uparrow}$ D. Bauer ${ }^{74, \uparrow}$ G. Bauer, ${ }^{108, *}$ S. Beale, ${ }^{,{ }^{, 7}}$ A. Bean, ${ }^{100,{ }^{\top}}$ P.-H. Beauchemin, ${ }^{6, *}$ F. Bedeschi, ${ }^{42, *}$ D. Beecher, ${ }^{75, *}$ M. Begalli, ${ }^{3,{ }^{, 7}}$ M. Begel, ${ }^{124,}$ S. Behari, ${ }^{103, *}$ C. Belanger-Champagne, ${ }^{69,{ }^{\dagger}}$ L. Bellantoni, ${ }^{89, \dagger}$ G. Bellettini, ${ }^{43,42, *}$ J. Bellinger, ${ }^{141, *}$ J. A. Benitez, ${ }^{113,}$

R. Beuselinck, ${ }^{74, \uparrow}$ V. A. Bezzubov, ${ }^{63, \dagger}$ P.C. Bhat, ${ }^{89, \dagger}$ V. Bhatnagar, ${ }^{33, \dagger}$ A. Bhatti, ${ }^{121, *}$ M. Binkley, ${ }^{89, *, a}$ D. Bisello, ${ }^{41,40, *}$

G. Borissov, ${ }^{72, \dagger}$ D. Bortoletto, ${ }^{98, *}$ T. Bose, ${ }^{105, \dagger}$ J. Boudreau, ${ }^{132, *}$ A. Boveia, ${ }^{84, *}$ A. Brandt, ${ }^{134, \dagger}$ B. Brau, ${ }^{84, *,}$
A. Bridgeman ${ }^{94, *}$ L. Brigliadori, ${ }^{38,37, *}$ R. Brock, ${ }^{113, \dagger}$ C. Bromberg, ${ }^{113, *}$ G. Brooijmans, ${ }^{120, \dagger}$ A. Bross, ${ }^{89, \dagger}$ D. Brown, ${ }^{22,}$
E. Brubaker, ${ }^{90, *}$ X. B. Bu, ${ }^{8, \dagger}$ D. Buchholz, ${ }^{93, \dagger}$ J. Budagov, ${ }^{60, *}$ H. S. Budd, ${ }^{122, *}$ S. Budd, ${ }^{94, *}$ M. Buehler, ${ }^{139,}$ V. Buescher, ${ }^{29,7}$ V. Bunichev, ${ }^{62, \uparrow}$ S. Burdin, ${ }^{72, *, t h}$ K. Burkett, ${ }^{89, *}$ T. H. Burnett, ${ }^{140, \uparrow}{ }^{67}$ G. Busetto, ${ }^{41,40, *}$ P. Bussey, ${ }^{71, *}$
 S. Calvett ${ }^{19, \dagger}$ E. Camacho-Péreze, ${ }^{57, \uparrow}$ S. Camarda ${ }^{66, *}$ J. Cammin ${ }^{122, \uparrow}$ M. Campanelli, ${ }^{75, *}$ M. Campbell, ${ }^{111, *}{ }^{112, *}$ F. Canelli, ${ }^{89,90, *}$ A. Canepa, ${ }^{130, *}$ B. Carls, ${ }_{89, *}^{94, *}$ D. Carlsmith, ${ }^{141, *}$ R. Carosi, ${ }^{42, *}$ M. A. Carrasco-Lizarraga, ${ }^{57, *}$ E. Carrerara ${ }^{87,7}$ S. Carrillo, ${ }^{86, *, \%}$ S. Carron, ${ }^{89, *}$ B. Casal, ${ }^{68, *}$ M. Casarsa, ${ }^{89, *}$ B. C. K. Casey, ${ }^{89,7}$ H. Castilla-Valdez, ${ }^{57, \uparrow}$ A. Castro, ${ }^{38,37, *}$ P. Catastini, ${ }^{44,42, *}$ D. Cauz, ${ }^{48, *}$ V. Cavaliere, ${ }^{44,42, *}$ M. Cavalli-Sforza, ${ }^{66, *}$ A. Cerri, ${ }^{99, *}$ L. Cerrito ${ }^{75, *, s}$ S. Chakrabartit ${ }^{123, \dagger}$ D. Chakraborty ${ }^{92, \dagger}$ K. M. Chan ${ }^{97, \uparrow}$ A. Chandra, ${ }^{95, \dagger}$ S. H. Chang, ${ }^{54, *}$ Y. C. Chen ${ }^{9, *}$ M. Chertok ${ }^{80, *}$ E. Cheu, ${ }^{78, \dagger}$ S. Chevalier-Théry, ${ }^{21, \dagger}$ G. Chiarelli, ${ }^{42, *}$ G. Chlachidze, ${ }^{89, *}$ F. Chlebana, ${ }^{89, *}$ K. Cho ${ }^{54, *}$ D. K. Cho, ${ }^{105}$ S. W. Cho, ${ }^{55, \dagger}$ S. Choi, ${ }^{56, \dagger}$ D. Chokheli, $60, *$ J. P. Chou, ${ }^{107, *}$ B. Choudhary, ${ }^{34, \dagger}$ T. Christoudias, ${ }^{74, \dagger}$ K. Chung, ${ }^{89, *,}$
W. H. Chung, ${ }^{1411, *}$ Y. S. Chung, ${ }^{122, *}$ T. Chwalek, ${ }^{28, *}$ S. Cihangir, $89,{ }^{89, *}$ C.I. Ciobanu, ${ }^{20, *}$ M. A. Ciocci, ${ }^{44,42, *}$ D. Claes, A. Clark, ${ }^{70, *}$ D. Clark, ${ }^{110, *}$ J. Clutter, ${ }^{100, \uparrow}$ G. Compostella, ${ }^{40, *}$ M.E. Convery, ${ }^{89, *}$ J. Conway, ${ }^{80, *}$ M. Cooke, ${ }^{89,{ }^{89}{ }^{187}}$

 M. Cwiok, ${ }^{36, \dagger}$ D. Dagenhart, ${ }^{89, *}$ N. d'Ascenzo, ${ }^{20, *, x}$ A. Das ${ }^{78, \uparrow}$ M. Datta, ${ }^{89, *}$ G. Davies ${ }^{74, \uparrow}$ T. Davies ${ }^{71, *}$ K. De, ${ }^{13}$
 M. Dell'Orso, ${ }^{4,42, *}$ G. De Lorenzo ${ }^{66, *}$ C. Deluca, ${ }^{66, *}$ M. Demarteau, ${ }^{89, \uparrow}$ R. Demina, ${ }^{122, \dagger}$ L. Demortier, ${ }^{121, *}$
J. Deng, ${ }^{125, *, 8}$ M. Deninno, ${ }^{37, *}$ D. Denisov, ${ }^{89, \uparrow}$ S. P. Denisov, ${ }^{63,7}$ M. d ${ }^{3}$ Errico, ${ }^{41,40, *}$ S. Desai, ${ }^{89, \uparrow}$ K. DeVaughan, ${ }^{115}$
S. Donati, ${ }^{43,42, *}$ P. Dong, ${ }^{, 99, *}$ M. D'Onofrio, ${ }^{66, *}$ T. Dorigo, ${ }^{40, *}$ T. Dorland, ${ }^{140, \dagger}$ S. Dube, ${ }^{116, *}$ A. Dubey,$^{34, \uparrow}$ L. V. Dudko, ${ }^{62,{ }^{6}}$

A. Elagin, ${ }^{135, *}$ J. Ellison, ${ }^{83, \dagger}$ V. D. Elvira, ${ }^{89, \dagger}$ Y. Enari, ${ }^{20, \dagger}$ S. Eno ${ }^{104, \uparrow}$ R-
N. Ershaidat, ${ }^{20, *, e e}$ R. Eusebi, ${ }^{135, *}$ H. Evans, ${ }^{95, \dagger}$ A. Evdokimov, ${ }^{124, \dagger}$ V. N. E
S. Farrington, ${ }^{77, *}$ W. T. Fedorko, ${ }^{90, *}$ R. G. Feild, ${ }^{85, *}$ M. Feindt,

S. Giagu ${ }^{47,46, *}$ V Giakoumopoulou ${ }^{32, *}$ P Giannetti ${ }^{42, *}$ K. Gibs. C. Ginsburg $89, *$ G. Ginther ${ }^{89,122, \uparrow}$ N. Giokaris $32, *$ M. Giordani $49,48, *$ P

> PRL 104,061802 (2010) First CDF+DØ publication in Run II

Low mass result

- Upper limit for $\mathrm{m}_{\mathrm{H}}=115 \mathrm{GeV} / \mathrm{c}^{2}$ of $1.56 \times$ бым @95\% CL
- Tevatron-only exclusion at 95% CL of $100<\mathrm{m}_{\mathrm{H}}<109 \mathrm{GeV} / \mathrm{c}^{2}$

Background subtracted data

- Subtract background model that has been fit to data
- Independent of any assumed Higgs cross section
- No excess above background observed
- Proceed to set a limit

Data distributions

- Rebin histograms of final discriminants for all channels in $\log (\mathrm{S} / \mathrm{B})$

New Tevatron Higgs Limits

Tevatron Run II Preliminary, $\mathrm{L} \leq 8.2 \mathrm{fb}^{-1}$

- SM Higgs boson excluded at 95% CL for $158<\mathrm{m}_{\boldsymbol{H}}<173 \mathrm{GeV}$
- Expected exclusion at $95 \% \mathrm{CL}$ for $\mathbf{1 5 3}<\mathbf{m}_{\mathrm{H}}<\mathbf{1 7 9} \mathbf{~ G e V}$
- Compare to summer 2010 expected exclusion of $156<\mathrm{m}_{\mathrm{H}}<173 \mathrm{GeV}$

Another approach: $C L_{s+b}$

- Roughly comparable to Power constrained $\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$ approach used by ATLAS

Just how excluded is it?

- SM Higgs of 162 < $\mathrm{m}_{\mathrm{H}}<166 \mathrm{GeV}$ excluded @99.5\% CL

Conclusion

- Combination of all Tevatron searches has been performed
- Up to $5.9 \mathrm{fb}^{-1}$ of data for $100<\mathrm{m}_{\mathrm{H}}<130 \mathrm{GeV}$
- Up to $8.2 \mathrm{fb}^{-1}$ of data for $130<\mathrm{m}_{\mathrm{H}}<200 \mathrm{GeV}$
- Tevatron results exclude at 95% CL
- $100<\mathrm{m}_{\mathrm{H}}<109 \mathrm{GeV}$
- $158<\mathrm{m}_{\mathrm{H}}<173 \mathrm{GeV}$
- Expected exclusion of $153<\mathrm{m}_{\boldsymbol{H}}<179 \mathrm{GeV}$
- Up from $156<\mathrm{m}_{\mathrm{H}}<173 \mathrm{GeV}$
- Individual experiment exclusions now from both CDF and DO
- Tevatron exclusion now at 99.5% CL for some masses
- CDF and DO strategies continue to be to leave the Higgs nowhere to hide
- End of Run 2 (this year) will leave $\sim 10 \mathrm{fb}^{-1}$ of data for each experiment
- As always, more analysis improvements are underway
- Plenty left to do- expect new results soon!

Backup

LLR from CLs method

Data distributions: Iow mass

Theoretical Issues

- Are we treating cross-section uncertainty due to scale variations ($\mu_{\mathrm{R}} \& \mu_{\mathrm{F}}$) correctly?
- We obtain gluon fusion cross sections from:
D. de Florian, M. Grazzini, Phys. Lett. B674, 291-294 (2009).
[arXiv:0901.2427 [hep-ph]].
C. Anastasiou, R. Boughezal, F. Petriello, JHEP 0904, 003 (2009).
[arXiv:0811.3458 [hep-ph]].
- Use a scale variation factor of 2 from the central value to estimate impact of potential high-order contributions
- Authors confirm high-order effects are small
- Another recent publication argues for even smaller scale uncertainties
V. Ahrens, T. Becher, M. Neubert et al., Eur. Phys. J. C62, 333-353
(2009). |arXiv:0809.4283 [hep-ph]|;
V. Ahrens, T. Becher, M. Neubert et al., [arXiv:1008.3162 [hep-ph]].
- We feel our treatment is adequate, if not conservative, and generally supported by the theoretical community

Theoretical issues (II)

- Do we need additional uncertainties assigned to our gluon fusion cross section resulting from EFT approach used to integrate loop contributions?
- Such an uncertainty is already included:

```
C. Anastasiou, R. Boughezal, F. Petriello, JHEP 0904, 003 (2009).
[arXiv:0811.3458 [hep-ph]].
```

- Uncertainties on gluon fusion cross sections used in our searches include $\sim 2 \%$ to account for this
- Authors find entirely removing corrections from light quark diagrams changes the total cross section by less than 4\%
- We feel our treatment of EFT effects is sound

