QED Is endangered by the proton's charge rms radius

QED IS NOT endangered by the proton's running radii

The leading proton finite size contribution

Contributions to the μ **p Lamb shift**

#	Contribution	Value	Unc.	_
3	Relativistic one loop VP	205.0282		
4	NR two-loop electron VP	1.5081		ర్చర్త సర్తి
5	Polarization insertion in two Coulomb lines	0.1509		
6	NR three-loop electron VP	0.00529		
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223		
8	Three-loop VP (total, uncorrected)			
9	Wichmann-Kroll	-0.00103		9 9 8
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135	
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010	
12	Electron loop in the radiative photon of order $\alpha^2 (Z\alpha)^4$	-0.00150		<u> </u>
13	Mixed electron and muon loops	0.00007		
14	Hadronic polarization $\alpha(Z\alpha)^4 m_r$	0.01077	0.00038	
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047		
16	Hadronic polarization in the radiative photon $\alpha^2 (Z\alpha)^4 m_r$	-0.000015		
17	Recoil contribution	0.05750		
18	Recoil finite size	0.01300	0.001	*°Q#
19	Recoil correction to VP	-0.00410		
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	-0.66770		
21	Muon Lamb shift 4th order	-0.00169		5 = - + 5 + - = - = - = - = - = - = - = - = - = -
22	Recoil corrections of order $\alpha (Z\alpha)^5 \frac{m}{M} m_r$	-0.04497		•")•" (Hadross
23	Recoil of order α^6	0.00030		<u> </u>
24	Dediative receil corrections of order $\alpha(Z_{co})^{n}m_{corr}$	-0.00960		
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004	n å
26	For an Zarion operator induced concernent to nuclear polarizability $lpha(Zlpha)^5m_r$	0.00019		
27	Radiative photon induced correction to nuclear polarizability $\alpha(Z\alpha)^5 m_r$	-0.00001		•`?•• {
	Sum	206.0573	0.0045	
	ETH	A. Antognini,	CERN	10.08.2010 – p.27

Lamb shift prediction

radius dependent contributions

Contribution	Value	
Leading nuclear size contribution	-5.19745	$< r_{\rm p}^2 >$
Radiative corrections to nuclear finite size effect	-0.0275	$< r_{\rm p}^2 >$
Nuclear size correction of order $(Z\alpha)^6 < r_{ m p}^2 >$	-0.001243	$< r_{\rm p}^2 >$
Total $< r_{\rm p}^2 > {\rm contribution}$	-5.22619	$< r_{\rm p}^2 >$
Nuclear size correction of order $(Z\alpha)^5$	0.0347	$< r_{\rm p}^3 >$
Nuclear size correction of order $(Z\alpha)^6 < r_{ m p}^4 >$	-0.000043	$< r_{\rm p}^2 >^2$

 A1 collaboration at MAMI, Mainz has started the reevaluation of the various proton moments:

$$< r_{\rm p}^2 >, R_{\rm Zemach}, < r_{\rm p}^4 > \dots$$

New evaluations of structure leads to a shift < 10% of the measured discrepancy.

 $E(2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}) = 209.9779(49) - 5.2262 r_{\rm p}^2 + 0.0347 r_{\rm p}^3 \,\mathrm{meV} \qquad \text{(HFS+FS included)}$

A. Antognini, CERN 10.08.2010 - p.31

ETH

Ladies & Gentlemen

THE THRD ZEMACH NOMENT

For a dipole form factor with $[\langle r^3 \rangle_{(2)}]^2 = (3675/256) [\langle r^2 \rangle]^3$ $r_p \equiv \sqrt{\langle r_p^2 \rangle}$ $L_{\rm th}(r_p) = 209.9779(49) - 5.22619 r_p^2 + 0.0347 r_p^3$

It is intrepid to use a model of the proton

... to challenge QED

THE RUNNC RMSP-RADIUS $\left| \begin{array}{c} 2 \\ r \\ p \end{array} \right|$

$$\frac{2\pi\alpha}{3} \langle r_p^2 \rangle |\Psi_{2,0}(0)|^2$$

The slope of FF at $\mathbf{q}^2 = 0$ the F.T. of $\delta(\vec{r})$
 $\int_0^\infty e^{i\vec{q}\vec{r}} d^3q$ (all q)
Rephrase "atomic" result:
 $\langle r_p^2 \rangle|_{(0,\infty)} \simeq \frac{\langle r_p^2 \rangle|_{(\alpha m_r,m)}}{1 - 4 \alpha m_r \sqrt{\langle r_p^2 \rangle|_{(\alpha m_r,m)}/6}}$
 $\mathbf{q} = \mathcal{O}(\alpha m_r)$ up to $\mathbf{q} \sim m/4$
Momentum range is which the proton is "probed" in the atom form-factor dependent

from electronproton scattering data

 $2^{-n/2} e^{-z/2} z^{\frac{n}{2}-1}$ f(z,n) = $\Gamma\left[\frac{n}{2}\right]$ $p(\chi^2, n_{\text{dof}}) = \int_{\chi^2}^{\infty} f(z, n_{\text{dof}}) \, dz =$ $\Gamma(n_{
m dof}/2,\chi^2/2)$ $\Gamma(n_{\rm dof}/2)$ The data are tickled to agree with H H and the data do not agree

what to say ??????

what to say ??????

ĭiii TM % & !! §°≠≠¢ ¢¶∞§**

Ig Nobel Peace Prize 2010

Stephens, Atkins, and Kingston of Keele University, for confirming the widely held belief that swearing relieves pain.

iii \$ & # £ ∞ § ¶ !!!

REFERENCE: "<u>Swearing as a Response</u> to Pain," Richard Stephens, John Atkins, and Andrew Kingston, Neuroreport, vol. 20, no. 12, 2009, pp. 1056-60.

 $\sqrt{\langle r_p^2 \rangle}$ (polynom) =

$0.883(5)_{stat}(5)_{syst}(3)_{model}$ fm

 $\sqrt{\langle r_p^2 \rangle}$ (spline) =

$0.875(5)_{\rm stat}(4)_{\rm syst}(2)_{\rm model}$ fm

THEOREN

Proton form factors at low Q^2

Parton-Distribution Functions at low x

Study form-factor with the same neural- network techniques only instances ??

Belushkin, Hammer & Meissner, PR C75 (2007) 035202.

Hill & Paz, arXiv: 1008.4619v1.

Wang et al., Phys. Rev. D 79 094001 (2009).

Ig Nobel Management Prize 2010

<u>Pluchino, Rapisarda</u>, and <u>Garofalo</u> of the Univ. of Catania, for <u>demonstrating</u> mathematically that organizations would become more efficient if they promoted people at random.

REFERENCE: "<u>The Peter Principle</u> <u>Revisited: A Computational Study</u>," Alessandro Pluchino, Andrea Rapisarda, and Cesare Garofalo, Physica A, vol. 389, no. 3, February 2010, pp. 467-72.

BASIA