

Higgs and $Z \rightarrow \tau^+ \tau^-$ in CMS

Christian Veelken for the CMS Collaboration

Moriond EWK Conference, March 14th 2011

$Z \rightarrow \tau^+ \tau^-$ Production @ 7 TeV

CMS Measurement of $Z/\gamma^* \rightarrow I^+I^-$, $I = e/\mu$:

 σ • BR(Z/γ^{*} → I⁺I⁻) = 0.931 ± 0.026 (stat.) ± 0.023 (sys.) ± 0.102 (lumi.) nb JHEP 01 (2011) 080

NNLO Prediction: $0.972 \pm 0.042 \text{ nb} (60 < M_{\parallel} < 120 \text{ GeV})$

$Z \rightarrow \tau^+ \tau^-$ important Source of high energetic τ Leptons in SM:

- Measurement of τ Identification Efficiencies
- Commissioning of τ Triggers
- Important Background in Searches for beyond the SM Physics

Christian Veelken

CMS τ Identification

Decay Mode	Resonance	Mass (MeV/ c^2)	Branching ratio(%)
$\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}$			17.8 %
$\tau^- ightarrow \mu^- \bar{\nu}_\mu \nu_\tau$			17.4 %
$\tau^- \rightarrow h^- \nu_{\tau}$			11.6 %
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$	ρ	770	26.0 %
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	<i>a</i> 1	1200	10.8 %
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	a1	1200	9.8 %
$ au^- ightarrow h^- h^+ h^- \pi^0 u_{ au}$			4.8~%
Other hadronic modes			1.7%

Improvement in CMS τ Identification Performance

due to Reconstruction of individual Decay Modes (Vector Meson Resonances), based on Particle Flow

$Z \rightarrow \tau^+ \tau^-$ Decay Modes

$Z \rightarrow \tau^+ \tau^-$ Analysis based on Combination of Decay Modes:

Variety of semi-leptonic and leptonic Channels analyzed ΣBr = 54.8%

N.B.: Hadronic Channel difficult (Trigger, high Backgrounds)

Christian Veelken

Event Selection

For μ + τ_{had} , e + τ_{had} and e + μ Channels, μ + μ Channel different (Backup)

Trigger

Events triggered by single Electron/Muon Triggers P_T thresholds 9-15 GeV, depending on instantaneous Luminosity

Lepton Selection

Electrons	Muons	had. τ Decays
P _T > 15 GeV	P _T > 15 GeV	P _T > 20 GeV
η < 2.1 (2.4 for e + μ)	η < 2.1	η < 2.3
isolated	isolated	Tau Id.
		Veto against e/µ

Opposite Charge Lepton Pair

Transverse Mass

e + τ_{had} , μ + τ_{had} : M_T(I + MET) < 40 GeV e + μ : M_T(e + MET) < 50 GeV && M_T(μ + MET) < 50 GeV

Veto Events with additional isolated Leptons

Christian Veelken

Cross-section Extraction

$$\sigma(pp \to ZX) \times \mathcal{B}(Z \to \tau^+ \tau^-) = \frac{N}{\mathcal{A} \cdot \epsilon \cdot \mathcal{B}' \cdot \mathcal{L}}$$

- N = N_{obs} N_{bgr} Background Contribution N_{bgr} estimated from Data (using 1-3 complementary Methods, depending on Channel)
- Acceptance taken from Monte Carlo (POWHEG + TAUOLA, PYTHIA with CMS Z2 tune for Hadronization)
- Efficiency factorized into independent Terms Each Term either measured directly in Data or taken from Monte Carlo and applying Data/MC Correction factor measured from Data
- Branching Ratios for $\tau^+\tau^-$ to decay into $\mu + \tau_{had}$, $e + \tau_{had}$, $e + \mu$, $\mu + \mu$ taken from PDG
- Luminosity measured with Precision of 4%

Christian Veelken

Event Yields

CMS Data, 36 pb⁻¹ @ 7 TeV

	$ au_{\mu} au_{ m had}$	$ au_{ m e} au_{ m had}$	$ au_{ m e} au_{\mu}$	$ au_{\mu} au_{\mu} \ (M_{\mu\mu} < 70 \ { m GeV})$
$Z \rightarrow \ell^+ \ell^-$, jet fake $ au_{had}$	6.4 ± 2.4	15.0 ± 6.2		
$Z \to \ell^+ \ell^-$	12.9 ± 3.5	109.3 ± 28.0	2.4 ± 0.3	20.1 ± 1.3
tī	6.0 ± 3.0	2.6 ± 1.3	7.1 ± 1.3	0.15 ± 0.03
$W \to \ell \nu$	54.9 ± 4.8	30.6 ± 3.1		
$W \to au u$	14.7 ± 1.3	7.0 ± 0.7	1.5 ± 0.5	$2.5 \pm 2.5 \ (< 5 \ @95 \ \% CL)$
QCD	131.6 ± 14.1	181.1 ± 22.5	* -	
WW/WZ/ZZ	1.6 ± 0.8	0.8 ± 0.4	3.0 ± 0.4	
Total Background	228.4 ± 15.8	346.4 ± 36.7	14.0 ± 1.8	22.8 ± 2.8
Total Data	516	540	101	58

Background Estimates quoted in Table obtained from Data-driven Methods

Difference between "Total Data" and "Total Background" is measured $Z \rightarrow \tau^+ \tau^-$ Signal

→ > 600 Z → $\tau^+\tau^-$ Signal Events selected in CMS Data

Visible Mass Spectra

Christian Veelken

$Z \to \tau^{+}\tau^{-} \text{ Cross-section Results}$

Individual Channels:

$$\begin{split} &\sigma\left(\mathrm{pp}\rightarrow\mathrm{ZX}\right)\times\mathcal{B}\left(\mathrm{Z}\rightarrow\tau^{+}\tau^{-}\right)_{\mu\tau} &= 0.83\pm0.07\,(\mathrm{stat.})\pm0.04\,(\mathrm{syst.})\pm0.03\,(\mathrm{lumi.})\pm0.19\,(\tau\text{-ID})\,\mathrm{nb}\\ &\sigma\left(\mathrm{pp}\rightarrow\mathrm{ZX}\right)\times\mathcal{B}\left(\mathrm{Z}\rightarrow\tau^{+}\tau^{-}\right)_{\mathrm{e\tau}} &= 0.94\pm0.11\,(\mathrm{stat.})\pm0.03\,(\mathrm{syst.})\pm0.04\,(\mathrm{lumi.})\pm0.22\,(\tau\text{-ID})\,\mathrm{nb}\\ &\sigma\left(\mathrm{pp}\rightarrow\mathrm{ZX}\right)\times\mathcal{B}\left(\mathrm{Z}\rightarrow\tau^{+}\tau^{-}\right)_{\mathrm{e\mu}} &= 0.99\pm0.12\,(\mathrm{stat.})\pm0.06\,(\mathrm{syst.})\pm0.04\,(\mathrm{lumi.})\,\mathrm{nb}\\ &\sigma\left(\mathrm{pp}\rightarrow\mathrm{ZX}\right)\times\mathcal{B}\left(\mathrm{Z}\rightarrow\tau^{+}\tau^{-}\right)_{\mu\mu} &= 1.15\pm0.25\,(\mathrm{stat.})\pm0.10\,(\mathrm{syst.})\pm0.05\,(\mathrm{lumi.})\,\mathrm{nb}. \end{split}$$

Good Agreement between all four Channels

Largest Uncertainty: hadronic Tau Identification Efficiency

 τ_{had} Identification Efficiency constrained by Ratio of Event Yields in semi-leptonic/leptonic Channels

→ Determine Z → $\tau^+\tau^-$ Cross-section by simultaneous Fit of all four Channels

 $\sigma \bullet BR(Z/\gamma^* \rightarrow \tau^+\tau^-) = 1.00 \pm 0.05 \text{ (stat.)} \pm 0.08 \text{ (sys.)} \pm 0.04 \text{ (lumi.)} \text{ nb}$

Measured Cross-Section in good Agreement with Theory Prediction (NNLO) and CMS Measurement of $Z/\gamma^* \rightarrow I^+I^-$, $I = e/\mu$ Cross-section

Data/MC Correction factor for τ Id. Efficiency = 0.94 ± 0.09, compatible with 1Christian VeelkenHiggs and $Z \rightarrow \tau^+\tau^-$ in CMS10

And the Higgs ? ______

Christian Veelken

MSSM Higgs Phenomenology

Minimal Supersymmetric Standard Model

- 2 Higgs doublets → 5 physical Higgs Bosons:
 - 2 CP-even neutrals: h, H scalar
 1 CP-odd neutral: A pseudo-scalar
 2 charged: H⁺, H⁻
- CP-odd and 1 CP-even Higgs Boson degenerate in Mass
- At Born level MSSM described by 2 Parameters: tan β, m_A (Dependency on SUSY Parameters via radiative Corrections)

τ⁺τ⁻ Mass Reconstruction

- Likelihood Fit of momenta of visible Decay Products and of Neutrinos produced in τ Decays
- At present uses Likelihood Terms for τ Decay kinematics and missing E_T
- Yields "physical" Solution for every Event
- Improvement in Resolution wrt. previous Techniques

→ Clear Z Mass Peak seen in CMS Data

Christian Veelken

Higgs and $Z \rightarrow \tau^+ \tau^-$ in CMS

Normalization

for tan $\beta = 30$

Higgs $\rightarrow \tau^+\tau^-$ Cross-section Limit

φ: Sum of pseudo-scalar + scalar Higgs of ~same Mass

Observed and expected Limit on $\sigma \times Br$ computed for different Mass Hypotheses m_A via combined Likelihood Fit of M_{tt} Spectrum in $\mu + \tau_{had}$, $e + \tau_{had}$, $e + \mu$ Channels using Bayesian Inference

→ No Evidence for Signal, observed Limit agrees with expected Sensitivity Christian Veelken Higgs and $Z \rightarrow \tau^+\tau^-$ in CMS 14

Upper Limit on $\sigma \times Br$ converted into Limit on MSSM Parameter tan β :

- Relation between σ, Br and tan β taken from LHC Higgs Cross Sections Working Group (for m_h^{max} SUSY benchmark scenario) hep-ph 1101.0593v2
- Theory Uncertainty estimated according to WG Recommendations

→ CMS Limit more stringent than TeVatron Limit over whole Mass range Christian Veelken Higgs and $Z \rightarrow \tau^+\tau^-$ in CMS 15

Summary

Z → τ⁺τ⁻ Production has been analyzed in four Channels: μ + τ_{had}, e + τ_{had}, e + μ and μ + μ

- An unambiguous Signal is established in all Channels
- The Z → τ⁺τ⁻ Cross-section is measured @ 7 TeV center-of mass Energy and found to be in good Agreement with Z → I⁺I⁻, I = e/µ Cross-section measured by CMS as well as with Theory Predictions (NNLO)

No evidence for Higgs $\rightarrow \tau^+\tau^-$ Signal observed in CMS Data

- Observed Limit tracks expected Limit
- $\tau^+\tau^-$ Mass reconstructed using novel Likelihood Technique
- Stringent Limits are set on MSSM Higgs $\rightarrow \tau^+\tau^-$ Production

Christian Veelken

Higgs and Z $\rightarrow \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$ in CMS

Backup Material

Christian Veelken

The CMS Experiment

Christian Veelken

The CMS Detector

Christian Veelken

τ Decay Modes

Decay Mode	Resonance	Mass (MeV/ c^2)	Branching ratio(%)
$\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}$			17.8 %
$\tau^- ightarrow \mu^- \bar{\nu}_\mu \nu_\tau$			17.4~%
$\tau^- \rightarrow h^- \nu_{\tau}$			11.6 %
$ au^- ightarrow h^- \pi^0 u_ au$	ρ	770	26.0 %
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	<i>a</i> 1	1200	10.8 %
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	a1	1200	9.8 %
$ au^- ightarrow h^- h^+ h^- \pi^0 u_{ au}$			4.8 %
Other hadronic modes			1.7%

Tau Identification ≅ Reconstruction of well-known Vector Meson resonances

Christian Veelken

CMS τ Id. Performance

CMS Preliminary 2010, $\sqrt{s} = 7$ TeV, L = 36 pb⁻¹

Event Selection µ + µ **Channel**

Trigger

Events triggered by single Muon Triggers P_T threshold 9-15 GeV, depending on instantaneous Luminosity

Lepton Selection

1 st Muon	2 nd Muon
P _T > 19 GeV	P _T > 10 GeV
η < 2.1	η < 2.1
isolated	isolated

1st + 2nd Muon of opposite Charge

Δφ(μ,μ) < 2.0 rad

Missing $E_T < 50 \text{ GeV}$

$Z \rightarrow \tau^+ \tau^- \rightarrow \mu^+ \mu^- / Z \rightarrow \mu^+ \mu^-$ Likelihood > 0.87

- $P_T(\mu^+ + \mu^-)/(P_T^{\mu^+} + P_T^{\mu^-})$
- DCA between μ^+ , μ^- Tracks

Christian Veelken

Higgs and Z $\rightarrow \tau^+\tau^-$ in CMS

• Δφ(μ⁺, MET)

$Z \rightarrow \tau^+ \tau^-$ Acceptance \times Efficiency

	$ au_{\mu} au_{ m had}$	$ au_{ m e} au_{ m had}$	$ au_{ m e} au_{\mu}$	$ au_{\mu} au_{\mu}$
Acceptance: \mathcal{A}	0.13	0.12	0.074	0.16
Selection efficiency: ϵ	0.37	0.23	0.55	0.17
Mass window correction: f_c	0.97	0.97	0.98	0.99

- Acceptance taken from Z → τ⁺τ⁻ Monte Carlo (POWHEG + TAUOLA) Fraction of Events generated with 60 < M_{ττ} < 120 GeV for which visible Decay Products of both τ Leptons are within |η| Range and above P_T thresholds (depending on Decay Mode/Channel)
- Efficiency defined as Fraction of Z → τ⁺τ⁻ Events within Acceptance that passes all Event Selection criteria, measured either directly in Data or taken from Monte Carlo and applying Data/MC Correction factor measured from Data
- Mass window Correction factor corrects for $Z/\gamma^* \rightarrow \tau^+\tau^-$ Events which pass Event Selection, but are not generated within Mass window $60 < M_{\tau\tau} < 120 \text{ GeV}$

Christian Veelken

$Z \rightarrow \tau^+ \tau^-$ Systematic Uncertainties

Source	$\tau_{\mu}\tau_{had}$	$ au_{ m e} au_{ m had}$	$ au_{\rm e} au_{\mu}$	$ au_{\mu} au_{\mu}$
trigger	0.2 %	3 %	0.2 %	0.3 %
lepton identification and isolation	1.0 %	1.1 %	1%	1%
$ au_{had}$ identification	23	%	-	-
efficiency of topological selections	2	//o -		-
likelihood selection efficiency		-		2%
acceptance due to τ energy scale, 3 %	3.5	5%	-	-
acceptance due to e energy scale, 2%	-	1.6 %	1.6 %	-
acceptance due to μ momentum scale, 1 %	1%	-	1%	2%
luminosity		4 %	6	
parton distribution functions	2 %			

Largest Uncertainty: hadronic Tau Identification Efficiency

- → τ_{had} Identification Efficiency constrained by Ratio of Event Yields in semi-leptonic/leptonic Channels
- → Determine Z → $\tau^+\tau^-$ Cross-section by simultaneous Fit of all four Channels

τ Id. Efficiency Measurement

Select Sample of $Z \rightarrow \tau^+ \tau^- \rightarrow \mu + \tau_{had}$ Candidate Events without applying τ Id.

Challenge: sizeable Background Contributions

→ Determine Z → $\tau^+\tau^-$ → $\mu + \tau_{had}$ Signal Contribution by fitting $\mu + \tau_{had}$ visible Mass Distribution in Tau Id. passed/failed Samples

Data-driven Background Estimation

Fake-rate Technique

- Probability of quark/gluon Jets to fake hadronic τ Signature measured in QCD multi-jet, QCD μ -enriched and W + Jets Events
- Select sample of Events passing all Event Selection Criteria except τ Id.
- Weight selected Events by measured Fake-rates

Results for Z $\rightarrow \mu$ + τ_{had} Channel

 P_T^{μ} = 39.3 GeV P_T^{had} = 28.2 GeV, lead. Track P_T = 3.3 GeV M_{vis} = 67.0 GeV, MET = 19.9 GeV, $M_{\tau\tau}$ = 90.3 GeV

Christian Veelken

 P_T^{μ} = 20.5 GeV P_T^{had} = 35.5 GeV, lead. Track P_T = 18.5 GeV M_{vis} = 62.7 GeV, MET = 6.2 GeV, $M_{\tau\tau}$ = 98.3 GeV

Christian Veelken

$Z \rightarrow \tau^+ \tau^- \rightarrow e^- + \mu^+$ Candidate

 $P_t^e = 29.9 \text{ GeV}$ $P_T^{\mu} = 16.3 \text{ GeV}$ $M_{vis} = 44.2 \text{ GeV}, \text{MET} = 17.4 \text{ GeV}, M_{\tau\tau} = 91.4 \text{ GeV}$

Christian Veelken

$M_{\tau\tau}$ Resolution

Compared to collinear Approximation, Likelihood algorithm:

- provides better Resolution
- increases Event Statistics
 by Factors ~ 2
- Christian Veelken

Compared to visible Mass, Likelihood algorithm:

• improves relative Resolution $\Delta M_{\tau\tau}/M_{\tau\tau}$

Limit Calculation

- Based on fitting $M_{\tau\tau}$ Template histograms to $M_{\tau\tau}$ Distribution observed in Data for 3 Channels: $\mu + \tau_{had}$, $e + \tau_{had}$, $e + \mu$
- 95% Confidence Level upper Limit computed via Bayesian Inference

$$\int_{\sigma=0}^{\sigma_{95\%}} \frac{\int \mathcal{L}(\text{data},\sigma,\nu) \,\pi(\sigma) d\nu}{\int \mathcal{L}(\text{data},\sigma',\nu') \,\pi(\sigma') d\sigma' d\nu'} d\sigma = 0.95$$

using flat Prior Probability $\pi(\sigma)$ on Higgs Cross-section $\sigma > 0$

Likelihood:
$$\mathcal{L}(m_{\tau\tau}; \sigma_{\tau\tau}, \{\nu\}) = \mathcal{L}_{m_{\tau\tau}}(m_{\tau\tau}; \sigma_{\tau\tau}, \{\nu\}) \cdot \prod_{n} \mathcal{L}_{n}(\nu_{n}; \bar{\nu}_{n}, \Delta \bar{\nu}_{n})$$

 $\mathcal{L}_{m_{\tau\tau}}(m_{\tau\tau}; \sigma_{\tau\tau}, \{\nu\})$: Product over all Bins of the M_{$\tau\tau$} Distribution of –log(Poisson Probability) to observe N_{obs} Events given N expected

- $\mathcal{L}(\nu; \bar{\nu}, \Delta \bar{\nu})$: Constraint on Nuisance Parameter v (Scale or Shape, e.g. Efficiency, Energy scale, Background Yield) obtained from independent Measurement
- Expected Limit obtained by "toy" Experiments: Median expected Limit and 68%, 95% CL Intervals computed from Distribution of "toy" Limits

Observed vs. expected Limit

Observed vs. expected Limits by Channel

Higgs Acceptance × Efficiency

Approximation

φ: Sum of scalar + pseudo-scalar Higgs

 $mA \le 120 \text{ GeV: } \varphi = h + A$ mA ~ 130 GeV: $\varphi = h + H + A$ mA ≥ 140 GeV: $\varphi = H + A$

Acceptance × Efficiency determined for pseudo-scalar A

Christian Veelken

Parton Luminosities LHC @ 7 TeV

→ 36pb⁻¹ of LHC @ 7 TeV Data correspond to O(1fb⁻¹) of TeVatron Data

Ratio of MSSM Higgs Signal/Z Background Cross-sections in favor of LHC

Christian Veelken

The Hadron + Strips τ ld. Algorithm

