Top quark properties at the Tevatron

Top properties at the Tevatron

The top quark is special

Top was discovered at Fermilab in 1995 Its mass much larger than any other fermion Using the latest Tevatron-averaged M_{top} arXiv:1007.3178

 $L_{\rm Yukawa} = -\lambda \psi_L \overline{\Phi \psi}_R$

Yukawa coupling = 0.996±0.006

 Only quark with large coupling to Higgs - special role for the top quark?

l+, q

 v, \overline{q}'

Lifetime shorter than hadronization time

 \rightarrow only quark that decays before hadronizing

→ Thousands of top events analyzed, O(10⁴) by the end of the Tevatron run!

Is it really the SM top?

Fabrizio Margaroli

Top properties at the Tevatron

Intrinsic properties

$CDF M_{top}$ combination

Combining results obtained

- in different datasets
 - consistency between 8 analyses
 - Indepent datasets, about 5000 top pair evts analyzed!
- with different techniques
 - robustness
 - affected by different systematic sources

M_{top}= 172.7 +/- 0.6 (stat) +/- 0.9 (syst.) GeV/c²

Top mass from D0

- D0 measures too top quark mass directly in two decay modes
- Q. what is the M_{top} we are measuring?A. MC mass
- Q. what is the quark mass? A. mass is a renormalization scheme-dependent quantity

General agreement that m(MC) is close to the m(pole) D0 challenges this assumption:

- use D0 σ(ttbar) meas in arxiv:1101.0124 and its dependence on M_{top} in MC
- assume M_{top} in MC is the pole mass
- compare it to NLO computations to measure pole mass
 M_{top}^{pole}= 167.5 ^{+5.4} -4.9 GeV/c²

agreement (1 sigma) with Tevatron world average MS interpretation disfavored

*using Moch and Uwer

Production properties

Charge asymmetry in top events

- A ppbar collider is best suited to study the forward backward asymmetry of top quark production
- NLO QCD predicts small asymmetry from qqbar → ttbar, about 5%

Experimental determination(1)

- A ppbar collider is best suited to study the forward backward asymmetry of top quark production
- NLO QCD predicts small asymmetry from qqbar → ttbar, about 5%

*background subtracted

2σ

Experimental determination(2)

- A ppbar collider is best suited to study the forward backward asymmetry of top quark production
- NLO QCD predicts small asymmetry from qqbar → ttbar, about 5%

Dependence on Q²

- A ppbar collider is best suited to study the forward backward asymmetry of top quark production
- NLO QCD predicts small asymmetry from qqbar \rightarrow ttbar, about 5%
- Study of Q² dependence M(ttbar) probes more finely NLO QCD computations. Also, it is a more sensitive probe to new physics

Experimental determination(3)

- A ppbar collider is best suited to study the forward backward asymmetry of top quark production
- NLO QCD predicts small asymmetry from qqbar → ttbar, about 5%
- Study of Q² dependence M(ttbar) probes more finely NLO QCD computations. Also, it is a more sensitive probe to new physics

two experiments (CDF D0) to study this effect two different decay modes at hand twice the data yet to be analyzed!

*parton level

Experimental determination(3)

- A ppbar collider is best suited to study the forward backward asymmetry of top quark production
- NLO QCD predicts small asymmetry from qqbar → ttbar, about 5%
- Study of Q² dependence M(ttbar) probes more finely NLO QCD computations. Also, it is a more sensitive probe to new physics
- Model building must contend with precisely measured ttbar xsection and direct searches of exotic resonances decaying to ttbar

Search for boosted top quarks

Study boosted top → Probe NLO QCD/understand boosted jets/search for NP Cross section for SM ttbar with Pt(top) ≥ 400GeV is a handful of fb

- direct identification of the W decay and the b quark unfeasible
- jet has mass close to Mtop \rightarrow very different from jets from q/g

Fabrizio Margaroli

Top properties at the Tevatron

Decay properties

Spin correlation

SM predicts top and antitop spins to be highly correlated

• observable to measure depends on quantization axis

Leptons from W decays are ideal probe for this observable

W helicity in top decays

The V-A structure of the weak interaction can be tested by reconstructing the polarization of the W+ boson from top-quark decay.

SM predicts $f_0 = 0.7$ and $f_+ = 0$

In beyond- the-SM scenarios, significant deviations from the SM expectations are possible due to the presence of anomalous couplings

Combination of all Tevatron results ongoing - stay tuned

Study of color flow in ttbar events

Jet pulls have been introduced to discriminate jet pairs originating from color singlets (H \rightarrow bb) from jet pairs originated from color octects (g \rightarrow bb)

W from ttbar events are good candidates for this study.

Compare SM hypothesis with color-octet "W" hypothesis. Expect fSinglet > 0.277 @ 95% C.L. Meas fSinglet = 0.56 ± 0.42(stat+syst)

arxiv:1101.0648

FCNC in ttbar events

Events per 30 GeV

0_ò

100

200

Top FCNC is extremely small in SM ~ O(10⁻¹⁴) Beyond SM : up to O(10⁻⁴) Signature of trileptons, jets and missing ET very striking Any signal = new physics

300

Br(t→Zq)<3.3% @ 95% CL

Top properties at the Tevatron

400 m^{reco}_{top} (GeV)

Not enough time...

Summary

- Sixteen years after its discovery, the knowledge of the top quark has greatly expanded thanks to the large Tevaron dataset
 - extensive measurements of top quark intrinsic properties, study of its production and decay
- With the LHC era coming, Tevatron will still play an important role:
 - some Tevatron measurements its mass! have broad impact to our field, and will be a long standing legacy
 - others such as charge asymmetry, spin correlations are complementary to the LHC program

Summary

- Sixteen years after its discovery, the knowledge of the top quark has greatly expanded thanks to the large Tevaron dataset
 - extensive measurements of top quark intrinsic properties, study of its production and decay
- With the LHC era coming, Tevatron will still play an important role:
 - some Tevatron measurements its mass! have broad impact to our field, and will be a long standing legacy
 - others such as charge asymmetry, spin correlations are complementary to the LHC program
- Study of forward-backward asymmetry of top events shows discrepancy with current NLO QCD prediction. Waiting for NNLO calculation. Also, twice the data already available to soon confirm or disprove the existing excess!

Where?

Fermilab's Tevatron Run II pp collider at 1.96 TeV, running since year '01. Currently performing very well:

- New record in instantaneous luminosity 4 ·10³² cm⁻² s⁻¹
- New record in delivered luminosity: 2.5fb⁻¹ per year
- Two multi-purpose, well-understood detectors CDF and D0

Top created in 1 in $O(10^{10})$ collisions at the Tevatron

How many?

Pair production decay signatures

Lepton+Jets

- large BR(30%)
- good S/B ratio.

Dileptonic

- Highest S/B
- lowest BR(5%)

All hadronic

- highest BR(44%)
- Very large QCD background

Tau modes 💵

- explicit tau identification

MET + jets 🚺

 Lepton+jets and dileptonic decays where electron/muon is not id'ed.
Large acceptance to taus

No multivariate

Counting experiment after background understanding:

- W+HF cross section underestimated in the MC: W+HF content measured in data in the 1 or 2 jet event sample
- b-tagging mistag rate measured in data, parametrization applied to W+jets
- CDF measures ratio of ttbar/Z→II with the same trigger and use the theoretical Z cross section to remove the uncertainty due to luminosity measurement

With multivariate

One step further: signal/background discrimination:

- ttbar more energetic, central and isotropic than W+jets
- NN (CDF) or BDT (D0) input variables: Ht, aplanarity, sphericity, etc.
- cross section measurement: template fit of ttbar and W+jets to the discriminant output
- CDF measures ratio of ttbar/Z→II with the same trigger and use the theoretical Z cross section to remove the uncertainty due to luminosity measurement

C asymmetry in ttbar production

L0 collision is charge-symmetric NLO produces asymmetry through interference

Net result is a positive asymmetry

Several exotic ttbar production modes generate at tree-level a C asymmetry too, through the interference with SM qq → tt.

PS gg (LHC) initial state is C-symmetric. Also, no asymmetry to $gg \rightarrow X \rightarrow tt$

The big picture

Fabrizio Margaroli

From lepton rapidity to top rapidity

Fabrizio Margaroli

Top properties at the Tevatron

Search for Z'

Z'<900GeV excluded at 95%CL

Z'<820GeV excluded at 95%CL

Narrow widht hypothesis in both analyses

Top charge

Select Lepton+Jets events wih 2 b-tagged jets

- kinematically reconstruct the events->choose best combination of Wb pa
- charge of lepton = charge of W boson
- tag the flavor of b-jet by its charge

Exclude 4/3 hypothesis with 95% CL

The quest for 4th generation

4th generation long believed to be ruled out.We now know this is not the case.

- Possible mass range is in the few 100's GeV.
- Large region already covered by CDF/D0
- Exploring several b'/t' decays

