Review of flavor in warped models

Andreas Weiler CERN

Moriond 2011

16/3/2011

Can we have a sensible
 flavor sector without an (elementary) Higgs?

2) Does it survive the constraints from Kaon physics and the B factories?

3) Predictions for the LHC?

Weak scale is unstable

elementary scalar Higgs

Solution: no elementary scalar composite Higgs (bound-state, like pion in QCD) $\mathcal{H} \rightarrow \langle \psi_{TC} \psi_{TC}^c \rangle \qquad [\mathcal{H}] \approx 3$

Solution: no elementary scalar composite Higgs (bound-state, like pion in QCD) $\mathcal{H} \to \langle \psi_{TC} \psi_{TC}^c \rangle \qquad [\mathcal{H}] \approx 3$ $\mathcal{L}_{Higgs} = \frac{1}{\Lambda^2} \mathcal{H}^2 + \dots \mathcal{V}$

Flavor without an elementary Higgs

Yukawas (CKM, masses)

 $y_{ij} \psi_i H \psi_j$ SM

Flavor without an elementary Higgs $[\mathcal{H}] \approx 3$ Yukawas (CKM, masses) $y_{ij}\,\bar{\psi}_i H\psi_j \quad \longrightarrow \quad \frac{1}{\Lambda^2} y_{ij}\,\bar{\psi}_i \mathcal{H}\psi_j$ SM composite

Flavor problem

 $\frac{1}{\Lambda^2} y_{ij} \,\overline{\psi}_i \mathcal{H} \psi_j + \frac{1}{\Lambda^2} c_{ijkl} \,\overline{\psi}_i \psi_j \overline{\psi}_k \psi_l$

can't be too small, because top mass large

 $\Lambda = \mathcal{O}(\mathrm{TeV})$

Flavor problem

 $\frac{1}{\Lambda^2} y_{ij} \,\overline{\psi}_i \mathcal{H} \psi_j + \frac{1}{\Lambda^2} c_{ijkl} \,\overline{\psi}_i \psi_j \overline{\psi}_k \psi_l$

can't be too small, because top mass large

 $\Lambda = \mathcal{O}(\text{TeV})$

must be very small because this leads to FCNCs

 $\Lambda > 10^5 \,\mathrm{TeV}$

Two ways of giving mass to fermions...

Bi-linear (like SM):

 $\mathcal{L} = y f_L \mathcal{O}_H f_R, \quad \mathcal{O}_H \sim (1,2)_{\frac{1}{2}}$

Linear:

D.B. Kaplan '91

 $\mathcal{L} = y f_L \mathcal{O}_R + y_R f_R \mathcal{O}_L + m \mathcal{O}_L \mathcal{O}_R, \quad \mathcal{O}_R \sim (3, 2)_{\frac{1}{6}}$

Partial compositeness $|SM\rangle = \cos\phi|elem.\rangle + \sin\phi|comp.\rangle$ $|heavy\rangle = -\sin\phi|elem.\rangle + \cos\phi|comp.\rangle$ Composites are heavy ($m_{\rho} \approx \text{TeV}$). Light quarks have very little composite admixture.

elementary fields

strong sector

Higgs, top, resonances ho_{μ}

 u, d, c, s, b, A_{μ}

 $|g_*, m_{
ho}|$

 $1 \lesssim g_* \lesssim 4\pi$

AdS/CFT => Randall Sundrum $ds^{2} = \left(\frac{R}{z}\right)^{2} \left(dx_{\mu}dx_{\nu} - dz^{2}\right)$

LHC implications

Resonance production (option 1)

 $\sim g_*^2 \sin^2 \theta_{u_B}$

strongly suppressed for light quarks!

NB, gluon-rho-rho = 0

LHC implications

t

+

Resonance decay

ρ

decays dominantly into 3rd generation (tt, bt, bb)

tops mostly collimated, need sub-jet top tagger

Agashe et al, Lillie et al

FCNC protection

masses from mixing in composites $m_d \sim v \sin \theta_{d_L} Y^* \sin \theta_{d_R}$

 $\overline{K^0} - \overline{\overline{K}^0}$

FCNC protection

Gherghetta, Pomarol; Huber; Agashe, Perez, Soni; masses from mixing in composites $m_d \sim v \sin \theta_{d_L} Y^* \sin \theta_{d_R}$ FCNCs suppressed by the same mixings $\sim \frac{g_*^2}{M_o^2} s_{d_L} s_{d_R} s_{s_L} s_{s_R}$ $\sim \frac{g_*^2}{M_*^2} \frac{m_d m_s}{v Y_*^2}$

 $K^{0} = \bar{K}^{0}$

FCNC protection

Gherghetta, Pomarol; Huber; Agashe, Perez, Soni;
masses from mixing in composites

$$m_d \sim v \sin \theta_{d_L} Y^* \sin \theta_{d_R}$$

FCNCs suppressed by
the same mixings
 $\sim \frac{g_*^2}{M_\rho^2} s_{d_L} s_{d_R} s_{s_L} s_{s_R}$
 $\sim \frac{g_*^2}{M_\rho^2} \frac{m_d m_s}{vY_*^2}$ RS-GIM

$$K^0 - \bar{K}^0$$

CP constraints on composite mass

Csaki, Falkowski, AW; Buras et al; Casagrande et al $\Delta F=2~~({\rm strongest~constraint~from~}\epsilon_K)$

 $\Delta F = 1$ (strongest constraint from ϵ'/ϵ)

Gedalia et. al

 $\Delta F=0$ neutron EDM

$$M_* \gtrsim 1.3 Y_* \,\mathrm{TeV}$$

$$M_* \ge 2.5 Y_* \,\mathrm{TeV}$$

Agashe et. al, Delaunay et. al, Redi, AW

Flavor triviality: dynamical MFV

Cacciapaglia, Csaki, Galloway, Marandella, Terning, A.W.

strong sector $SU(3)_Q \times SU(3)_u \times SU(3)_d$

sweet spot if MFV ''shines'' into the bulk, $m_
hopprox 2\,{
m TeV}$

=> flavor gauge bosons predicted

Flavor gauge bosons at LHC

 $g_{\rm eff} G^{(1)\rm KK}_{\mu} \bar{\psi} \psi$

flavor gauge bosons do not have massless modes (flavor is broken)

no $\gamma - \rho$ mixing ! But quark composite mixing can be flavor universal & large $\sim g_*^2 \sin^2 \theta_{u_B}$

Flavor gauge bosons at LHC

 P_{1} $f_{q}(x_{1})$ $x_{1}P$ $\gamma^{*}(M)$ $x_{2}P_{2}$ $f_{\bar{q}}(x_{2})$

 g_{eff} (

flavor gauge bosons do not have massless modes (flavor is broken)

no $\gamma - \rho$ mixing !

But quark composite mixing can be flavor universal & large $\sim g_*^2 \sin^2 \theta_{u_B}$

Flavor scalars & gauge bosons

Csaki, Kagan, Lee, Perez, AW in preparation

wednesday, September 9, 2009 see also Grinstein et. al. possible explanation of FB asymmetry at Tevatron

Outlook

more on warped Models:

Suzanne Westhoff - Top FB Asymmetry (next) Florian Goertz - Higgs physics (YSF2) Torsten Pfoh - CPV in B_S (YSF3)

Indirect tests: new physics C.S.I. SM has accidental symmetries (B, L), e.g. $\mathcal{L}_{SM} + \frac{C_{\mathcal{B}}}{\Lambda^2} (\bar{u}^c u) (\bar{e}^+ d) \qquad \stackrel{\times \pi}{\overset{\circ}{\gamma}}$ ⇒ **absence** of violation probes very high scales Flavor symmetries are only weakly broken (except top) & FCNCs require 1-loop B $\mathcal{L}_{SM} + \frac{C_{\text{ffayor}}}{\Lambda 2} (\bar{b}d) (\bar{b}d)$

⇒ smallness of violation probes high scales

The SM flavor puzzle

 $Y_D \approx \operatorname{diag} \left(\begin{array}{ccc} 2 \cdot 10^{-5} & 0.0005 & 0.02 \end{array} \right)$ $Y_U \approx \left(\begin{array}{ccc} 6 \cdot 10^{-6} & -0.001 & 0.008 + 0.004i \\ 1 \cdot 10^{-6} & 0.004 & -0.04 + 0.001 \\ 8 \cdot 10^{-9} + 2 \cdot 10^{-8}i & 0.0002 & 0.98 \end{array} \right)$

Why this structure? Small & hierarchical.

Other dimensionless parameters of the SM: g_s~I, g~0.6, g'~0.3, λ_{Higgs} ~I, $|\theta| < 10^{-9}$

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	${ m Re}$	Im	
$\overline{(ar{s}_L\gamma^\mu d_L)^2}$	$9.8 imes 10^2$	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^\mu d_L)^2$	5.1×10^{2}	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\overline{b}_R d_L) (\overline{b}_L d_R)$	1.9×10^{3}	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$\overline{(ar{b}_L \gamma^\mu s_L)^2}$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\overline{b}_R s_L)(\overline{b}_L s_R)$	3.7	1×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	${ m Re}$	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$\overline{(ar{c}_L \gamma^\mu u_L)^2}$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$\overline{(\overline{b}_L \gamma^\mu d_L)^2}$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\overline{b}_R d_L)(\overline{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$\overline{(ar{b}_L \gamma^\mu s_L)^2}$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\overline{b}_R s_L) (\overline{b}_L s_R)$	3.7	7×10^2	1.3 :	$\times 10^{-5}$	Δm_{B_s}

Very strong suppression! New flavor violation must either approximately follow SM pattern...

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$\overline{(ar{s}_L\gamma^\mu d_L)^2}$	$9.8 imes 10^2$	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b_L \gamma^\mu d_L})^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\overline{b}_R d_L)(\overline{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$\overline{(\overline{b}_L \gamma^\mu s_L)^2}$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\overline{b}_R s_L) (\overline{b}_L s_R)$	$3.7 imes 10^2$		1.3×10^{-5}		Δm_{B_s}

Very strong suppression! New flavor violation must either approximately follow SM pattern...

... or exist only at very high scales ($10^2 - 10^5 \text{ TeV}$)

Why are FCNCs so suppressed in the SM? no tree FCNCs: $g^4/(4\pi)^2$ $\sim (|/30)^2$ $\frac{m_c^2 - m_u^2}{m_W^2} \sin^2 \theta_C \sim (1/400)^2$ mixing & GIM: $\frac{1}{(30 \cdot 400)^2} \frac{1}{m_W^2} \sim \frac{1}{(10^3 \,\text{TeV})^2}$ U,C

Experimental picture

+ spectrum, BR, A_{CP}, particle-antiparticle oscillations
+ determine masses, mixing angles and phases

Theorist's view + In the absence of Yukawas, SM globally $SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R}$ symmetric

$$v Y_u = U_u \begin{pmatrix} m_u & & \\ & m_c & \\ & & m_t \end{pmatrix} V_u \qquad v Y_d = U_d \begin{pmatrix} m_d & & \\ & m_s & \\ & & m_b \end{pmatrix} V_d$$

Experimental picture + spectrum, BR, A_{CP}, particle-antiparticle oscillations + determine masses, mixing angles and phases

Theorist's view + In the absence of Yukawas, SM globally $SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R}$ symmetric

$$v Y_u = U_u \begin{pmatrix} m_u & & \\ & m_c & \\ & & m_t \end{pmatrix} V_u \qquad v Y_d = U_d \begin{pmatrix} m_d & & \\ & m_s & \\ & & m_b \end{pmatrix} V_d$$

Experimental picture + spectrum, BR, A_{CP}, particle-antiparticle oscillations + determine masses, mixing angles and phases

Theorist's view + In the absence of Yukawas, SM globally $SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R}$ symmetric

$$v Y_{u} = U_{u} \begin{pmatrix} m_{u} & & \\ & m_{c} & \\ & & m_{t} \end{pmatrix} \bigvee v Y_{d} = \bigvee \begin{pmatrix} m_{d} & & \\ & m_{s} & \\ & & m_{b} \end{pmatrix} \bigvee v Y_{d}$$

$$V_{ckm}$$
unphysical due to SU(3)³!

Yukawa matrices $Y_{\cup} \& Y_{D}$ encode flavor violation $(\bar{u}_R^i u_R^j) \qquad \checkmark Y_U^\dagger Y_U$ $(\bar{Q}_L^i Q_L^j)$ $\uparrow Y_U Y_U^{\dagger}$ Vckm $Y_D Y_D^\dagger$ $(\bar{d}_R^i d_R^j)$ $Y_D^{\dagger} Y_D$

MFV Technicolor?

Chivukula, Georgi '87; Chivukula, Georgi, Randall '87; Randall '93; Georgi '94, Skiba '96

MFV Technicolor?

Chivukula, Georgi '87; Chivukula, Georgi, Randall '87; Randall '93; Georgi '94, Skiba '96

MFV Technicolor?

Chivukula, Georgi '87; Chivukula, Georgi, Randall '87; Randall '93; Georgi '94, Skiba '96

Simpler proposal: AdS/CFT construction : 5D GIM mechanism Cacciapaglia, Csaki, Galloway, Marandella, Terning, A.W., '08

Bounds on generic flavor violation

Bound for pGB Higgs

FCNC constraint more severe in composite pGB! Why? $\Upsilon^* \rightarrow g_* / 2$ & fermionic kinetic mixings

Bound for pGB Higgs

FCNC constraint more severe in composite pGB! Why? $\Upsilon^* \rightarrow g_* / 2$ & fermionic kinetic mixings