Max Baak (CERN), on behalf of the Gfitter group (*) Rencontres de Moriond ElectroWeak La Thuile, 13th-20th March 2011

http://cern.ch/Gfitter

Global ElectroWeak fit of Standard Model and Beyond with Gfitter

(*) M. Baak, M. Goebel, J. Haller, A. Höcker, D. Ludwig, K. Mönig, M. Schott, J. Stelzer

The Gfitter Project – Introduction

A Generic Fitter Project for HEP Model Testing

- Gfitter = state-of-the-art HEP model testing tool for LHC era
- Gfitter software and features:
 - Modular, object-oriented C++, relying on ROOT, XML, python, RooWorkspaces.
 - Core package with data-handling, fitting, and statistics tools
 - Various fitting tools: Minuit (1/2), Genetic Algorithms, Simulated Annealing, etc.
 - Consistent treatment of statistical, systematic, theoretical uncertainties (Rfit prescription), correlations, and inter-parameter dependencies.
 - » Theoretical uncertainties included in χ^2 with flat likelihood in allowed ranges
 - Full statistics analysis: goodness-of-fit, p-values, parameter scans, MC analyses.
 - Independent physics "plug-in" libraries: SM, 2HDM, oblique parameters, SUSY, ...
- Main publication: EPJ C60, 543-583, 2009 [arXiv:0811.0009]
 - Updates and new results available at: www.cern.ch/Gfitter

Today: latest global electroweak fit, BSM constraints from oblique corrections

Max Baak (CERN)

The global electroweak fit with Gfitter

- A Gfitter package for the global EW fit of the SM
 - New implementation of SM predictions of EW precision observables
 - Based on huge amount of pioneering work by many people (ZFITTER)
 - Radiative corrections are important

 $\wedge \wedge \wedge \wedge \wedge \wedge$

 γ ,Z/W

 $- \wedge \wedge \wedge \wedge \wedge \wedge$

 $\gamma Z/W$

- Logarithmic dependence on M_H through virtual corrections

-111/12

• Radiator functions: N³LO of the massless QCD Adler function, used for Z and W hadronic decay widths [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

 γ .Z/W

M_W and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop correction
 [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.] [M. Awramik et al., Nucl.Phys.B813:174-187 (2009) and refs.]

7/W

7/W

- Theoretical uncertainties: $M_W (\delta M_W = 4-6 MeV)$, $\sin^2\theta_{eff}^I (\delta \sin^2\theta_{eff}^I = 4.7 \cdot 10^{-5})$
- 2-loop EW form-factors: taken and adapted from ZFITTER

[A.B. Abruzov et al., Comput. Phys. Commun. 174 (2006) 728-758]

Z/W

Wherever possible, calculations thoroughly cross-checked against ZFITTER
 → excellent agreement

fitter

SM

Electroweak fit – Experimental input

SLC

õ

П

& Tevatron & LHC

ЕР

Tevatron

Free fit parameters:	M_Z [GeV]	91.1875 ± 0.0021
• M_{z} , M_{H} , m_{t} , $\Delta \alpha_{had}^{(5)}(M_{z}^{2})$, $\alpha_{s}(M_{z}^{2})$, \overline{m}_{c} , \overline{m}_{b}	Γ_Z [GeV]	2.4952 ± 0.0023
Scale percentare for theoretical upportainti	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037
- Scale parameters for the $\sum M$ form footons	$es_{f} R^{0}_{\ell}$	20.767 ± 0.025
on M_W , $\sin^2\theta'_{eff}$ (and the EVV form factors ρ	$D_{Z}', \ \mathcal{K}_{Z}') \qquad A_{\mathrm{FB}}^{0,\ell}$	0.0171 ± 0.0010
	A_ℓ $^{(\star)}$	0.1499 ± 0.0018
Latest experimental input:	A_c	0.670 ± 0.027
• Z-pole observables: LEP / SLC results	A_b	0.923 ± 0.020
	$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035
 M_W and 1 W latest from LEP/ levatron (03/2010 [ADLO,CFD+D0: arXiv:0908.1374v1] 	$A_{\rm FB}^{\tilde{0},\tilde{b}}$	0.0992 ± 0.0016
• m. · latest Tevatron average (07/2010)	R_c^0	0.1721 ± 0.0030
[CDF&D0: new combination ICHEP'10]	R_{b}^{0}	0.21629 ± 0.00066
• m _c , m _b world averages New!	$\sin^2 \! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012
• $\Delta \alpha_{\text{hod}}^{(5)}(M_{7}^{2})$ including α_{e} dependency (10/20)	$M_H [\text{GeV}]^{(\circ)}$	Likelihood ratios
[Davier et al., arXiv:1010.4180]		<u> 200 0 092</u>
Direct Higgs searches from LEP/Tevatron	$M_W[GeV]$	80.399 ± 0.023
(02/2011)	Γ_W [GeV]	2.085 ± 0.042
(U3/ZUTT) [ADLO: Phys. Lett. B565, 61 (2003)], [CDF+D0: Moriond 2011][ATLAS+CMS: Moriond 2011]	$\overline{\overline{m}}_c \ [\text{GeV}]$	$1.27 ^{+0.07}_{-0.11}$
	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$
• Not considered: $sin^2\theta_{eff}$ results from NuTeV	m_t [GeV]	173.3 ± 1.1
(uncertainties from NLO and nucl. effects of	$\Delta \alpha_{ m had}^{(5)}(M_Z^2)^{(\dagger \bigtriangleup)}$	2749 ± 10
Möller scattering (exp. accuracy too low)	$lpha_s(M_Z^2)$	_

Electroweak Fit – SM Fit Results

Pull values of complete fit

- No individual value exceeds 3σ
- FB asymmetry of bottom quarks \rightarrow largest contribution to χ^2
- Small contributions from M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\overline{m_c}$, $\overline{m_b}$
 - Input accuracies exceed fit requirements
- Goodness of fit naïve p-value:
 - Excluding direct Higgs searches: χ^2_{min} =16.6 \rightarrow Prob(χ^2_{min} , 13) = 22 %
 - Consistent when including direct Higgs searches:
 → p-value = 25 ± 1₋₂ % (as obtained from toys)
 - No indication for new physics

• $N^{3}LO \alpha_{S}$ from fit:

- $\alpha_s(M_Z^2) = 0.1193 \pm 0.0028 \pm 0.0001$
- First error is experimental fit error
- Second error due to missing QCD orders:
 - incl. variation of renorm. scale from $M_Z/2$ to $2M_Z$ and massless terms of order/beyond $\alpha_S^5(M_Z)$ and massive terms of order/beyond $\alpha_S^4(M_Z)$
- Excellent agreement with result N^3LO from τ decays

[Davier et al., EPJ C56, 305 (2008), arXiv:0803.0979]

Electroweak Fit – w/o direct Higgs searches

- M_H from fit w/o Higgs searches:
 - Central value $\pm 1\sigma$:

$$M_H = 95.7^{+30.3}_{-24.2} \text{ GeV}$$

2σ interval:

[52,171] GeV

- m_{top} vs M_W
 - Indirect results agree nicely with direct measurements.
 - Results from Higgs searches significantly reduces allowed indirect parameter space.
 - Illustrative probe of SM, if Higgs measured at LHC.

- Green error band from including / excluding theoretical errors in fit
 - Theoretical errors included in χ^2 with "flat likelihood term"

Electroweak fit – Impact of new $\Delta \alpha_{had}^{(5)}(M_Z^2)$

• We use latest value: $\Delta \alpha_{had}^{(5)}(M_Z) = (274.9 \pm 1.0) \cdot 10^{-4}$

[Davier et al., arXiv:1010.4180]

- Includes (among others) new $\pi^+\pi^-$ and multi-hadron x-sections from BABAR
- Value decreased compared with previous value: $\Delta \alpha_{had}^{(5)}(M_Z) = (276.8 \pm 2.2) \cdot 10^{-4}$

- In comparison:
 - Preliminary value (275.9±1.5)·10⁻⁴ (Teubner at Tau2010): $M_H = 90^{+30}_{-24} \text{ GeV}$
 - LEP EW wg: (275.8±3.5)·10⁻⁴ (Burghardt & Pietrzyk, 2005): $M_H = 89^{+36}_{-26} \text{ GeV}$

Electroweak fit – Experimental input

Global Fit of electroweak SM and beyond

Statistical interpretation direct Higgs searches

Statistical interpretation

- Experiments measure test statistic: LLR = -2lnQ, where $Q=L_{S+B}/L_B$
- Transformed by experiments into 1-sided upper limit (CL_S=CL_{S+B}/CL_B) using pseudo experiments
- We transform 1-sided CL_{S+B} into 2-sided CL^{2s}_{S+B}
 - SM is null hypothesis. We measure both down- and upward deviations from SM !
- χ^2 contribution calculated via inverse error function: $d\chi^2 = Erf^{-1}(1-CL^{2s}_{S+B})$
- Alternative treatment, followed here:
 - χ^2 contribution is: -2lnQ
 - Lacks statistical information from experiments.
 - No 2-sided interpretation
- ATLAS CL_{S+B} not public \otimes

- Note about combination of ATLAS and CMS H→WW results
- Ignores correlations between x-section
 theory and luminosity uncertainties !
- Tevatron/LHC combination procedure needed; ATLAS/CMS expected this summer.

LHC average neglects correlations

Electroweak Fit – with direct Higgs searches

- CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 120.2_{-5.2}^{+17.9}$ GeV
- 2 σ interval:
 - $-2\ln Q: [115,152] \text{ GeV}$ $CL_{s+b}^{2-sided}: [114,155] \text{ GeV}$
- LEP + Tevatron (Moriond 2011) :
 - CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 120.2_{-4.7}^{+12.3}$ GeV
 - 2 σ interval:

 $-2\ln Q$: [115,138] GeV

 $CL^{2-sided}_{s+b}$: [114,149] \cup [152,155] GeV

 Fit with LEP + Tevatron + LHC (H→WW) searches (Moriond 2011) :

- Central value unchanged
- 2σ interval:

-2ln Q: [115,137] GeV $CL_{s+b}^{2-sided}$: [114,14?] GeV

Global Fit of electroweak SM and beyond

A Gfitter package for Oblique Corrections

- At low energies, BSM physics appears dominantly through vacuum polarization corrections
 - Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak parameters
 - $\Delta \rho$, $\Delta \kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc
- Electroweak fit sensitive to BSM physics through oblique corrections x
 - In direct competition with sensitivity to Higgs loop corrections

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_SS + c_TT + c_UU$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: correction to Z→bb coupling, extended parameters (VWX)
 [Burgess et al., Phys. Lett. B326, 276 (1994)]
 [Burgess et al., Phys. Rev. D49, 6115 (1994)]

.

Fit to Oblique Parameters

- and $m_t = 173.1 \text{ GeV}$
- This defines (S,T,U) = (0,0,0)
- S, T: logarithmically dependent on M_H
- Comparison of EW data w/ SM prediction:
 - Preference for small M_H
 - No indication for new physics

Fit to Oblique Parameters

CERNY

S,T,U obtained from fit to EW observables ⊢

Results for STU:
 $S = 0.02 \pm 0.11$ STUT = 0.05 \pm 0.12T0.879-0.469U = 0.07 \pm 0.12T1-0.716

- Dark grey area: SM prediction
 - SM_{ref} chosen at: M_H = 120 GeV and m_t = 173.1 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T: logarithmically dependent on M_H
- Comparison of EW data w/ SM prediction:
 - Preference for small M_H
 - No indication for new physics

- Many new physics models also compatible with the EW data:
- Variation of model parameters often allows for large area in ST-plane.
- Tested: UED, 4th fermion generation, Littlest Higgs, SUSY, etc.

Many BSM theories can be tested ...

Inert Higgs Doublet Model

- IDM: introduction of extra Higgs doublet to help solve hierarchy problem
 [Barbieri et al., hep-ph/0603188v2 (2006)]
 - Doublet does not couple to fermions ("inert"). Does not acquire a VEV.
- Three new Higgses
 - Two neutral (M_H , M_A), one charged (M_{H^+}).
- Lightest inert particle ("LIP") is stable (M_L), assumed neutral.
 - Natural dark matter candidate
- Contributions to:
 - T: isospin violation between neutral and charged Higgses.
 - S: H⁺H⁻ and HA loop corrections to self energy of Z-photon propagator
- Results: large SM Higgs mass allowed.

Inert Higgs Doublet Model

- IDM: introduction of extra Higgs doublet to help solve hierarchy problem
 [Barbieri et al., hep-ph/0603188v2 (2006)]
 - Does not couple to fermions ("inert"). Does not acquire a VEV.
- Three new Higgses
 - Two neutral (M_H, M_A), one charged (M_{H+}).
- Lightest inert particle ("LIP") is stable (M_L), assumed neutral.
 - Natural dark matter candidate
- Contributions to:
 - T: isospin violation between neutral and charged Higgses.
 - S: H⁺H⁻ and HA loop corrections to self energy of Z-photon propagator
- Results: large SM Higgs mass allowed.

Universal Extra Dimensions

[Appelquist et al., Phys. Rev. D67 055002 (2003)] [Gogoladze et al., Phys. Rev. D74 093012 (2006)]

• UED:

- All SM particles can propagate into ED
- Compactification \rightarrow KK excitations
- Conservation of KK parity
 - Phenomenology similar to SUSY
 - Lightest stable KK state: DM candidate
- Model parameters:
 - d_{ED} : number of ED (fixed to d_{ED} =1)
 - R^{-1} : compactification scale ($m_{KK} \sim n/R$)
- Contribution to vac. polarisation (*STU*):
 - From KK-top/bottom and KK-Higgs loops
 - Dependent on R⁻¹, M_H (and m_t)

Results:

- Large R⁻¹: UED approaches SM (exp.)
 - Only small *M_H* allowed
- Small R⁻¹: large UED contribution can be compensated by large M_H
- Excluded: $R^{-1} < 300$ GeV and $M_H > 800$ GeV

Warped Extra Dimensions (Randall-Sundrum)

[L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)] [M. Carena et al., Phys. Rev. D68, 035010 (2003)]

- Introduction of one extra dimension (ED) to help solve the hierarchy problem
- RS model characterized by one warped ED, confined by two three-branes
 - Higgs localized on "IR" brane
 - Gauge and matter fields allowed to propagate in bulk region
- SM particles accompanied by towers of heavy KK modes.
- Model parameters:
 - L: inverse warp factor, function of compactification radius, explains hierarchy between EW an PI scale
 - *M_{KK}*: KK mass scale
- Results:
 - Large values of T possible
 - Large L forces large M_{KK} (several TeVs)
 - Some compensation if M_H is large

4th fermion generation

- Models with a fourth generation
 - No explanation for n=3 generations
 - Intr. new states for leptons and quarks
 - $\Psi_{L} = (\Psi_{1}, \Psi_{2})_{L}, \Psi_{1,R}, \Psi_{2,R}$
 - Free parameters: m_{u_4} , m_{d_4} , m_{e_4} , m_{v_4}
 - masses of new quarks and leptons
 - assume: no mixing of extra fermions
- Contrib. to STU from new fermions
 - Discrete shift in S from extra generation
 - Sensitive to mass difference between up- and down-type fields. (not to absolute mass scale)
- CDF+D0 & CMS: SM4G Higgs partially excluded:
 - CDF+D0: 131 > MH > 204 GeV @ 95% CL
 - CMD: 144 > MH > 207 GeV @ 95% CL

Results:

- With appropriate mass differences: 4th fermion model consistent with EW data
 - In particular, again a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / up-type quark (which both reduce size of S)

4th fermion generation

- Models with a fourth generation
 - No explanation for n=3 generations
 - Intr. new states for leptons and quarks
 - $\Psi_{L} = (\Psi_{1}, \Psi_{2})_{L}, \Psi_{1,R}, \Psi_{2,R}$
 - Free parameters: m_{u_4} , m_{d_4} , m_{e_4} , m_{v_4}
 - masses of new quarks and leptons
 - assume: no mixing of extra fermions
- Contrib. to STU from new fermions
 - Discrete shift in S from extra generation
 - Sensitive to mass difference between up- and down-type fields. (not to absolute mass scale)
- CDF+D0 & CMS: SM4G Higgs partially excluded:
 - CDF+D0: 131 > MH > 204 GeV @ 95% CL
 - CMD: 144 > MH > 207 GeV @ 95% CL

Results:

- With appropriate mass differences: 4th fermion model consistent with EW data
 - In particular, again a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / up-type quark (which both reduce size of S)

4th fermion generation

- Models with a fourth generation
 - No explanation for n=3 generations
 - Intr. new states for leptons and quarks
 - $\Psi_{I} = (\Psi_{1}, \Psi_{2})_{I}, \Psi_{1,R}, \Psi_{2,R}$
 - Free parameters: $m_{u_4}, m_{d_4}, m_{e_4}, m_{v_4}$
 - masses of new quarks and leptons
 - assume: no mixing of extra fermions
- Contrib. to STU from new fermions
 - Discrete shift in S from extra generation
 - Sensitive to mass difference between up- and down-type fields. (not to absolute mass scale)
- CDF+D0 & CMS: SM4G Higgs partially excluded:
 - CDF+D0: 131 > MH > 204 GeV @ 95% CL
 - CMD: 144 > MH > 207 GeV @ 95% CL

Results:

- With appropriate mass differences: 4th fermion model consistent with EW data
 - In particular, again a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / up-type quark (which both reduce size of S)

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

• G fitter is a powerful framework for HEP model fits.

Results shown

- New and updated global fit of the electroweak SM
 - Very happy to see first LHC Higgs results included in EW fit !
 - SM Higgs mass strongly constrained. Light Higgs very much preferred by SM.
- Oblique parameters (still!) a powerful method to constrain BSM theories
 - Presented constraints on various BSM theories (see more in models backup)
 - Heavy Higgs boson perfectly allowed in many BSM models by EW fit !

• The future

- Maintain and extend existing fits.
 - Update with latest Tevatron and LHC results
- Publication for BSM constraints from oblique parameters coming soon!
- Emphasis this year: SUSY results
- Latest results/updates and new results always available at:
 - http://cern.ch/Gfitter

A Generic Fitter Project for HEP Model Testing

Backup

- Results used:
 - Tevatron combination Moriond 2011, upto 8.2 /fb
 - CMS & ATLAS: latest H \rightarrow WW results, 35 and 36 /pb

Electroweak Fit – Tevatron Higgs Constraints

- M_H from fit w/o Higgs searches: Fit with LEP & latest Tevatron searches: Central value $\pm 1\sigma$: CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 95.7^{+30.3}_{-24.2} \text{ GeV}$ $M_{H} = 120.2^{+12.3}_{-4.7} \text{ GeV}$ 2σ interval: 2σ interval: • • [52,171] GeV $CL_{s+b}^{2-sided}$: [114,149] \cup [152,155] GeV $-2\ln Q$: [115,138] GeV LEP and Tevatron searches only $\Delta\chi^{2}$ 10 18 $\Delta\chi^2$ G fitter Ω G fitter $\overline{\mathbf{O}}$ 9 95% 16 95% 4σ 95° Ē 8 **Fevatron** 14 7 12 6 10 5 **3**σ 8 4 **2**σ 6 Theory uncertainty 3 Fit including theory errors 4 **2**σ 2 $-\delta\chi^2 = \text{Erf}^{-1} (\text{CL}_{aub}^{2-\text{sided}})$ Fit excluding theory errors 2 $- - \delta \gamma^2 = -2 \ln(\mathbf{Q})$ 1 1σ 1σ 0 n 50 100 150 200 250 300 100 150 200 250 300 LEP & Tevatron upto 8.2 fb⁻¹ M_н [GeV] M_н [GeV]
 - Green error band from including / excluding theoretical errors in fit
 - Theoretical errors included in χ^2 with "flat likelihood term"

Goodness of Global Fit

- determine p-value by using MC toy experiments
 - p-value: probability for wrongly rejecting the SM
 - p-value: probability for getting a $\chi^2_{min,tov}$ larger than the $\chi^2_{min,data}$ from data

 $p-value = (25 \pm 1_{-2})\%$

- no significant requirement for new physics
- small p-values for large Higgs masses (M_H~280 GeV)
- usually unable to indicate signals for physics beyond SM
 - sensitive observables mixed with insensitive ones

LHC, ILC (+GigaZ)*

- exp. improvement on M_W , m_t , $sin^2\theta^l_{eff}$, R_l^0
- in addition improved $\Delta \alpha_{had}^{(5)}(M_Z^2)$

	Expected uncertainty					
Quantity	Present	LHC	ILC	GigaZ (ILC)		
$M_W \; [\; \text{MeV}]$	25	15	15	6		
$m_t \; [\; \text{GeV}]$	1.2	1.0	0.2	0.1		
$\sin^2 \theta_{\text{eff}}^{\ell} \ [10^{-5}]$	17	17	17	1.3		
$R_{\ell}^0 \ [10^{-2}]$	2.5	2.5	2.5	0.4		
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [10^{-5}]$	22(7)	22~(7)	22(7)	22~(7)		
$M_H (= 120 \text{ GeV}) [\text{GeV}]$	$^{+56}_{-40} \begin{pmatrix} +52\\ -39 \end{pmatrix} \begin{bmatrix} +39\\ -31 \end{bmatrix}$	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$	$^{+27}_{-23}$ $\binom{+20}{-18}$ $\begin{bmatrix} +8\\-7\end{bmatrix}$		
$\alpha_s(M_Z^2) \ [10^{-4}]$	28	28	27	6		

- assume M_H=120 GeV by adjusting central values of observables
- improvement of M_H prediction
 - to be confronted with direct measurement → goodness-of-fit
 - broad minima: Rfit treatment of theo. uncertainties
- GigaZ: significant improvement for M_H and $\alpha_S(M_Z^2)$

*[ATLAS, Physics TDR (1999)][CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893][I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hepph/0003275][R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)][A. H. Hoang et al., EPJ direct C2, 1 (2000)][M. Winter, LC-PHSM-2001-016]

Minimal Extended Technicolor

- Extended Technicolor (ETC)
 - One of first explanations for EWSB and hierarchy problem.
- Magnitude of rad. corrections scales with number of technicolors and flavors.
- Minimal ETC: with 1 TC quark/ lepton generation, and 2 upto 4 TCs.
 - One triplet of TC quarks, doublet of TC leptons.
 - Techni-neutrino can be Dirac or Majorana.
 - Parameters: N_{TC}, ratio neutrino/ electrion masses.

Global Fit of electroweak SM and beyond

Warped Extra Dimensions w/ custodial symmetry

- Goal: "cure" WED with too large T values
- Introduction of so-called custodial isospin gauge symmetry in the bulk
- Extension of hypercharge group to SU(2)_R x U(1)_X
 - Bulk symmetry group: SU(3)_C x SU(2)_L x SU(2)_R x U(1)_X
- Broken to SM SU(3)_C x SU(2)_L x U(1)_Y on "UV" brane
- IR brane SU(2)_R symmetric
- Right-handed fermionic fields occur in doublets
- Results:
 - Almost completely ruled out
 - Only small *M_H* allowed

[K. Agashe, A. Delgado, M. May, R. Sundrum, hep-ph/0308036v2]

Littlest Higgs Model with T-Parity

- LHM: solves hierarchy problem, possible explanation for EWSM
- SM contributions to Higgs mass cancelled by new particles
- Non-linear sigma model, broken Global SU(5)/SO(5) symmetry
- Higgs = lightest pseudo-Nambu-Goldstone boson
- New SM-like fermions and gauge bosons at TeV scale
- T-parity = symmetry like susy R-parity (not time-invariance)
- Symmetry forbids direct couplings of new gauge bosons (T-odd) to SM particles (T-even)
- LHM provides natural dark matter candidate
- Two new top states: T-even m_{T+} and T-odd m_{T-}
- Dominant oblique corrections from weak isospin violation:

Littlest Higgs with T-Parity

- STU predictions (oblique corrections) inserted for Littlest Higgs model [Hubisz et al., JHEP 0601:135 (2006)]
- Parameters of LH model
 - f : symmetry breaking scale (scale of new particles)
 - s_λ≅m_{T-} /m_{T+} : ratio of T-odd/-even masses in top sector
 - Order one-coefficient δ_c (value depends on detail of UV physics)
 - Treated as theory uncertainty in fit (Rfit) : δ_c = [-5,5]
- F: degree of fine-tuning

 Results: LH model prefers large Higgs mass, with only small degree of fine-tuning

Littlest Higgs with T-Parity

- STU predictions (oblique corrections) inserted for Littlest Higgs model [Hubisz et al., JHEP 0601:135 (2006)]
- Parameters of LH model
 - f : symmetry breaking scale (scale of new particles)
 - s_λ≅m_{T-} /m_{T+} : ratio of T-odd/-even masses in top sector
 - Order one-coefficient δ_c (value depends on detail of UV physics)
 - Treated as theory uncertainty in fit (Rfit) : δ_c = [-5,5]
- F: degree of fine-tuning

 Results: LH model prefers large Higgs mass, with only small degree of fine-tuning

Littlest Higgs with T-Parity

- STU predictions (oblique corrections) inserted for Littlest Higgs model [Hubisz et al., JHEP 0601:135 (2006)]
- Parameters of LH model
 - f : symmetry breaking scale (scale of new particles)
 - s_λ≅m_{T-} /m_{T+} : ratio of T-odd/-even masses in top sector
 - Order one-coefficient δ_c (value depends on detail of UV physics)
 - Treated as theory uncertainty in fit (Rfit) : δ_c = [-5,5]
- F: degree of fine-tuning

 Results: LH model prefers large Higgs mass, with only small degree of fine-tuning

correlation coefficients between free fit parameters

Parameter	$\ln M_H$	$\Delta \alpha^{(5)}_{\rm had}(M_Z^2)$	M_Z	$\alpha_s(M_Z^2)$	m_t	\overline{m}_c	\overline{m}_b
$\ln M_H$	1	-0.395	0.113	0.041	0.309	-0.001	-0.006
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$		1	-0.006	0.101	-0.007	0.001	0.003
M_Z			1	-0.019	-0.015	-0.000	0.000
$\alpha_s(M_Z^2)$				1	0.021	0.011	0.043
m_t					1	0.000	-0.003
\overline{m}_c						1	0.000