

Top production at Tevatron

- Experimental setup
- Top production at Tevatron
- Top quark pair cross section and t' search
- Single top quark cross section
- Conclusion and outlook

Liang Li University of California at Riverside

Top Quark Physics

Top Quark is unique

- Heaviest fundamental particle now
 - Mass = 173.3 \pm 1.1 GeV
 - ~40 times heavier than bottom quark
 - Constrains on Higgs mass
- Strong coupling to the Higgs
 - Higgs-top Yukawa coupling

 $g_{Ht} = \sqrt{2} m_t / \text{VEV} = \sqrt{2} 173.1 \text{ GeV}/246 \text{ GeV} \approx 1$

- Closely linked to EWSB: play a significant role in new physics scenarios related to the EWSB
- Very short lifetime (~ 5×10⁻²⁵ s)
 - Decays before hadronization and makes it the only "bare quark"
 - Decays almost 100% of the time to Wb
- **Top Quark Physics is a rich field**
 - Production rates and properties
 - Precise test of SM and search for new phenomena

 $\Delta M_W \sim M_{top}^2$

 $\Delta M_{W} \sim In M_{H}$

Top Pair Production at Tevatron

Top Quark discovered at Tevatron via strong production

Top Production at Tevatron, L. Li (UC Riverside)

Signal and Background

Dominant background: W+jet

Dominant background: Dominant background: Z+jet Multijet

jet

Lepton+jets Channel

Two Analysis Methods

- Use b-tagging to suppress background
 - Form binned likelihood from data, $t\bar{t}$ cross section and predicted backgrounds (minimize negative log-likelihood function)
 - **D0:** $\sigma = 8.13 \pm 0.25(sta) {}^{+0.99}_{-0.86}(sys) pb$
 - CDF: $\sigma = 7.22 \pm 0.35(sta) \pm 0.56(sys) \pm 0.44(lum)$ pb
- Use kinematic discriminant to distinguish signal from background
 - Topological method (no b-tagging)
 - Fit discriminant output to data in all channels to extract cross section
 - **D0:** $\sigma = 7.68 \pm 0.31(sta) {}^{+0.64}_{-0.56}(sys) pb$
 - CDF: $\sigma = 7.71 \pm 0.37(sta) \pm 0.36(sys) \pm 0.45(lum)$ pb

Lepton+jets Channel

D0 Combination

- Use both kinematic information and b-tagging information
- Construct discriminant for channels dominated by backgrounds, otherwise use b-tagging method; multiply likelihood functions in each channel and fit to data
- $\sigma = 7.78^{+0.77}_{-0.64}$ (*sta* + *sys* + *lumi*) *pb* arXiv:1101.0124 [hep-ex]

CDF Combination

- Measure ratio of $t\bar{t}$ to $Z/\gamma^* \rightarrow ll$ cross sections to reduce luminosity uncertainty, $\sigma_{theo Z/\gamma^* \rightarrow ll} = 251.3 \pm 5.0 \ pb$
- **B-tagging:** $\sigma = 7.32 \pm 0.36(sta) \pm 0.59(sys) \pm 0.14(theo) pb$
- Topological: $\sigma = 7.82 \pm 0.38(sta) \pm 0.37(sys) \pm 0.15(theo) \, pb$
- Combined using BLUE method (best linear unbiased estimate)
- $\sigma = 7.70 \pm 0.52 (sta + sys + theo) pb$
- Total uncertainty: 6.8%
 PRL 105 012001

Dilepton Channel

• B-tagged (at least 1 b-tagged jet): $\sigma = 7.25 \pm 0.66(sta) \pm 0.47(sys)$ $\pm 0.44(lum)$ pb

Top Production at Tevatron, L. Li (UC Riverside)

400

300

H_T (GeV)

10ł

100

200

Tau+jets Channel

Template fit method

- Challenging final state: semi-hadronic tau with jets
 - Huge multijets background
 - However very sensitive to new physics, e.g. charged Higgs decay (MSSM)
- Multijets background extracted from data
- Form a neural network discriminant with templates fit to data $\sigma = 6.3 \frac{+1.2}{-1.1} (sta) \pm 0.7 (sys) \pm 0.4 (lum) \text{ pb} (M_{top} = 170 \text{ GeV})$

Missing E_T+jets Channel

CDF Conf. Note 10237

Recover events without identified leptons (complementary)

- One of the most sensitive channel for low mass Higgs search at Tevatron, also SUSY, leptoquark searches
- Multijets background dominates
 - Require b-tagging
 - Use neural network approach (NN_{QCD} > -0.5) to further suppress background
- Form final discriminant NN_{sig} and build binned likelihood from signal, backgrounds and data

$$\sigma = 7.12 \frac{+1.20}{-1.12} (sta + sys) \text{ pb}$$

Summary of Top Pair Production Cross Section

- All measurements consistent with Standard Model
 - Probe new physics
- Important to measure different channels
 - Different sensitivity to new physics

t' (4th generation quark) search

CDF Conf. Note 10347

CDF Conf. Note 10395

$t' \rightarrow t + X$

t' → Wb

- Large missing E_T
- Discriminant variable M_{TW} (transverse mass of leptonically decaying W)
- fit templates of the signal and background shapes to data using binned likelihood
- Derive limit in 2D (M_{t'}, M_x) mass points

- Heavy top-like particle
- Discriminant variable H_T (total transverse energy) and M_{reco} (reconstructed top mass): more energetic & heavier!
- Maximize binned likelihood fit in $H_{\rm T}$ and $M_{\rm reco}$ to extract the t' signal and/or set an upper limit
- Exclude M_t < 358 GeV @ 95% C.L.

Single Top Quark Production at Tevatron

Electroweak production predicted by the Standard Model

- Observed 14 years after the top discovery (1995 vs. 2009)
 - Experimentally very challenging
 - Signature looks like W+jets (dominant background)
- Another milestone in Tevatron program "stepping stone" to the Higgs
- Rich testing ground for SM and physics beyond SM
 - Direct measurement of the |V_{tb}| CKM matrix element, measure top width, lifetime
 - Search anomalous couplings, heavy W' boson, FCNC, 4th quark generation...

Signal and Background Modeling

Multivariate Analyses

Three methods: optimizing on expected sensitivity using simulations

- Boosted Decision Trees (BDT)
 - Common object and event kinematics, angular correlations, jet reconstruction and top quark reconstruction variables
- Bayesian Neural Network (BNN)
 - Average over many neural networks, improving performance
 - Use object 4 vectors + B-tagging information + Q*Eta + W transverse mass
- Neuro-evolution of Augmenting Topologies (NEAT)
 - Genetic algorithms for training NN
- Optimize on s+t, s- or t-channel separately
- Combined discriminant using BNN
 improves sensitivity even further!

Ranked BNNcomb discriminant

t-channel Cross Section

s vs. t-channel cross section sensitive to new physics models

Measure t-channel cross section without assumption of s-channel cross section

 Simultaneous measurement of sand t-channel with discriminant optimized for t-channel (s-channel treated as background)

$$\sigma_t = 2.90 \pm 0.59(sta + sys)$$

 $\sigma_s = 0.98 \pm 0.63(sta + sys)$

- Asymptotic significance calculation
 Sig_{obs} = 5.5 SD, Sig_{exp} = 4.6 SD
- t-channel cross section vs. top mass

m_t	$170 {\rm GeV}$	$172.5 {\rm GeV}$	$175 \mathrm{GeV}$
tqb	$2.80^{+0.57}_{-0.61}$	$2.90^{+0.59}_{-0.59}$	$2.53^{+0.58}_{-0.57}$

Conclusion

Top Quark cross section being measured at Tevatron with high precision

- Top pair cross section error ~ 6.5%
 - Important for testing both SM and BSM models
- New physics search
- Broad top physics programs at Tevatron
 - Top production, top properties and searches
 - <u>http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html</u>
 - <u>http://www-cdf.fnal.gov/physics/new/top/top.html</u>

Backup

The Tevatron Accelerator

Tevatron is running at peak performance! ~ 10 fb⁻¹ per experiment

• ~ 12 fb⁻¹ by end of 2011

Top Production at Tevatron, L. Li (UC Riverside)

Tevatron Collider

- Proton-antiproton collider with √s=1.96 TeV
- 36x36 bunches with 396ns between crossings
- ~5 collisions per bunch crossing
- L_{Inst} ~ 3x10³²cm⁻²s⁻¹
 Run I 1992-1995
 - Top quark discovered!

Run II 2001-2011

- Single Top quark discovered!
- Many more exciting physics results

The CDF & DØ Detectors

Tracking

Central Outer Tracker (Drift Chambers)

- Momentum measurement of charged particles
- Vertex and b-jet identification
- Calorimeter
 - Energy measurement of jets, electrons and neutrinos
- Muon system
 - Momentum measurement of muons
- Three level trigger system