Recent EW results from Belle

Anton Poluektov

BINP, Novosibirsk, Russia The University of Warwick, UK

On behalf of Belle collaboration

Unitarity triangle

$$\begin{pmatrix} \mathbf{q}_{i} \\ \mathbf{s}_{i} \\ \mathbf{s}_{i} \\ \mathbf{s}_{i} \end{pmatrix} \begin{pmatrix} \mathbf{d}' \\ \mathbf{s}' \\ \mathbf{b}' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$

$$\begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \lambda^{2}/2 & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix}$$

Unitarity triangle:

$$\begin{split} & \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} + 1 + \frac{V_{tb}^* V_{td}}{V_{cb}^* V_{cd}} = 0 \\ & \phi_1 \equiv \beta = \arg\left(\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*}\right) \\ & \phi_3 \equiv \gamma = \arg\left(\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*}\right) \\ & \text{Search for NP via measurement of sides and angles of UT.} \end{split}$$

Tension in the CKM fit: $\sim 3\sigma$ between direct and indirect sin $2\phi_1$ This talk: two new results from Belle

- Updated sin $2\phi_1$ measurement with $B \rightarrow (c\bar{c})K^0$
- Measurement of ϕ_3 with model-independent Dalitz plot analysis of $B \rightarrow DK$, $D \rightarrow K_S^0 \pi \pi$

- Belle detector, KEKB collider at KEK laboratory, Tsukuba, Japan
- World record luminosity: $L \simeq 2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (at $\Upsilon(5S)$).
- Stopped data taking in 2010 \Rightarrow upgrade to Belle II [M. Danilov's talk]
- Final data sample: more than 1 ab⁻¹
 - 711 fb $^{-1}$ at $\Upsilon(4S)$ (772 imes 10⁶ $B\overline{B}$ decays)
 - 121 fb⁻¹ at Υ(5S)
 - $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, energy scans

Time-dependent CP asymmetry in $B \rightarrow (c\overline{c})K^0$

Golden mode for CP violation measurement: $B^0 \rightarrow J/\psi K_S^0$. Measure mixing-induced CP violation, $b \rightarrow c\bar{c}s$ transition

Penguin diagram is suppressed, has the same weak phase \Rightarrow negligible theoretical uncertainty.

Measure *CP* asymmetric decay time distribution separately for B^0 and \overline{B}^0 :

$$p(\Delta t) = \frac{e^{|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 \pm \left[S_{f_{CP}} \sin(\Delta m_d \Delta t) + A_{f_{CP}} \cos(\Delta m_d \Delta t) \right] \right\}$$

In the Standard Model, $S_{f_{CP}} = -\xi_{f_{CP}} \sin 2\phi_1$ — indirect CPV $A_{f_{CP}} \simeq 0$ — direct CPV.

Last published Belle result: $\sin 2\phi_1 = 0.642 \pm 0.031 \pm 0.017$ (535M $B\overline{B}$)

Flavor tagging and Δt measurement

Machine with asymmetric beam energy.

 Δt is measured by z coordinates of vertices of signal B and tagging B B^0 and \overline{B}^0 are in entangled state:

flavor of one B is fixed by another B at the moment of its decay.

In practice, need to account for the wrong tag probability and vertexing resolution — calibrated with data.

Anton Poluektov

Recent EW results from Belle

Signal selection

In $\Upsilon(4S)$ decays, pairs of *B* mesons are produced near threshold. $E_B = E_{\rm CM}/2$, small CM momentum (300 MeV/*c*).

Selection variables:

• CM energy difference $\Delta E = \sum E_i - E_{\rm CM}/2$

• Beam-constrained mass of the B meson: $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 - (\sum p_i)^2}$

sin $2\phi_1$: Selection of $B \to (c\overline{c})K^0$ events

Use 711 fb⁻¹ sample (772M $B\overline{B}$ pairs). Belle preliminary More data, improved tracking $\Rightarrow \sim 50\%$ more statistics than prev. analysis

CP = -1	modes:
---------	--------

Mode	Signal yield		
$B ightarrow J/\psi K^0_S$, $J/\psi ightarrow I^+I^-$	12681 ± 114		
$B ightarrow \psi(2S) K^0_S$, $\psi(2S) ightarrow I^+ I^-$	908 ± 31		
$\psi(2S) ightarrow J/\psi \pi^+\pi^-$	1072 ± 33		
$B ightarrow \chi_{c1} K^0_S, \chi_{c1} ightarrow J/\psi \gamma$	943 ± 33		

 $CP = +1 \mod e:$ $B \rightarrow J/\psi K_L^0$ Signal yield: 10041 ± 154

Missing information about K_L^0 momentum: K_L^0 cluster reconstructed in ECL or KLM, match it with the K_L^0 direction from kinematical constraints.

sin $2\phi_1$: CP asymmetry in $B o (c\overline{c})K^0$

Moriond EW, 16 March 2011

sin $2\phi_1$: Combined sin $2\phi_1$ measurement

Combination of four modes:

 $S = 0.668 \pm 0.023 \pm 0.013 \text{ (syst)}$ $A = 0.007 \pm 0.016 \pm 0.013 \text{ (syst)}$

Expect tension in CKM fit to be loosened

Systematic errors:

	ΔS	ΔA				
Vertexing	$^{+0.008}_{-0.009}$	±0.008				
Flavor tagging	$^{+0.004}_{-0.003}$	±0.003				
Resolution function	± 0.007	± 0.001				
Physics parameters	± 0.001	< 0.001				
Fit bias	± 0.004	± 0.005				
$J/\psi K_S^0$ signal fraction	±0.002	± 0.001				
$J/\psi K_L^0$ signal fraction	± 0.004	$^{+0.000}_{-0.002}$				
$\psi(2S)K^0_S$ signal fraction	< 0.001	< 0.001				
$\chi_{c1} K_S^0$ signal fraction	< 0.001	< 0.001				
Background Δt	± 0.001	< 0.001				
Tag-side interference	± 0.001	± 0.008				
Total	± 0.013	± 0.013				
Significant improvement in sys. error						
(vertexing, resolution function)						

Belle preliminary

Measurement of ϕ_3 in $B \rightarrow DK$ decays

If D^0 and \overline{D}^0 decay into the same final state: $|\tilde{D}\rangle = |D^0\rangle + re^{i\theta}|\overline{D}^0\rangle$ Relative phase in $B^+ \to DK^+$: $\theta = +\phi_3 + \delta$, $B^- \to DK^-$: $\theta = -\phi_3 + \delta$.

Ratio of the two amplitudes:

$$r = \left| \frac{A(B^- \to \overline{D}{}^0 K^-)}{A(B^- \to D^0 K^-)} \right| = \left| \frac{V_{ub} V_{cs}^*}{V_{cb} V_{us}^*} \right| \times [\text{Color supp}] \sim 0.1$$

ϕ_3 : Dalitz analysis of D decay from $B^{\pm} \rightarrow DK^{\pm}$

[A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD **68**, 054018 (2003)] [A. Bondar, Belle Dalitz analysis meeting, 24-26 Sep. 2002] Use $B^{\pm} \rightarrow DK^{\pm}$ modes with 3-body decay $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$. Dalitz plot density: $d\sigma_{\pm}(m_{+}^{2}, m_{-}^{2}) \sim |M_{\pm}|^{2}dm_{+}^{2}dm_{-}^{2}$

$$|M_{\pm}(m_{+}^{2}, m_{-}^{2})|^{2} = |f_{D}(m_{+}^{2}, m_{-}^{2}) + re^{i\delta_{B} \pm i\phi_{3}}f_{D}(m_{-}^{2}, m_{+}^{2})|^{2}$$
$$= \left| \boxed{1} + re^{i\delta_{B} \pm i\phi_{3}} \boxed{1} \right|^{2}$$

 $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ amplitude f_D is extracted from continuum $(D^{*\pm} \to D\pi^{\pm})$, parametrized as a set of two-body amplitudes. Only $|f_D|^2$ is observable \Rightarrow Model dependence as a result . Latest Belle result: $\phi_3 = [78^{+11}_{-12} \pm 4(\text{syst}) \pm 9(\text{model})]^\circ$ (605 fb⁻¹) $r_B = 0.16 \pm 0.04 \pm 0.01(\text{syst})^{+0.05}_{-0.01}(\text{model})$ Model error would dominate precise measurements at Super B factories.

ϕ_3 : Binned Dalitz plot analysis

Solution: use binned Dalitz plot and deal with numbers of events in bins. [A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD **68**, 054018 (2003)] [A. Bondar, A. P. EPJ C **47**, 347 (2006); EPJ C **55**, 51 (2008)]

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} + y_{\pm}s_{i})\}$$
$$x_{\pm} = r_{B}\cos(\delta_{B} \pm \phi_{3}) \quad y_{\pm} = r_{B}\sin(\delta_{B} \pm \phi_{3})$$

 $\begin{array}{l} M_i^{\pm}: \text{ numbers of events in } D \to K_S^0 \pi^+ \pi^- \text{ bins from } B^{\pm} \to D K^{\pm} \\ K_i: \text{ numbers of events in bins of flavor } \overline{D}{}^0 \to K_S^0 \pi^+ \pi^- \text{ from } D^* \to D \pi. \\ c_i, s_i \text{ contain information about strong phase difference between symmetric } \\ \text{Dalitz plot points } (m_{K_S^0 \pi^+}^2, m_{K_S^0 \pi^-}^2) \text{ and } (m_{K_S^0 \pi^-}^2, m_{K_S^0 \pi^+}^2): \end{array}$

$$c_i = \langle \cos \Delta \delta_D \rangle, \quad s_i = \langle \sin \Delta \delta_D \rangle$$

ϕ_3 : Obtaining c_i, s_i

Coefficients c_i, s_i can be obtained in $\psi(3770) \rightarrow D^0 \overline{D}{}^0$ decays. Use quantum correlations between D^0 and $\overline{D}{}^0$.

• If both D decay to $K^0_S \pi^+ \pi^-$, the number of events in *i*-th bin of $D_1 \to K^0_S \pi^+ \pi^-$ and *j*-th bin of $D_2 \to K^0_S \pi^+ \pi^-$ is

$$M_{ij} = K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-i} K_j K_{-j}} (c_i c_j + s_i s_j).$$

 \Rightarrow constrain c_i and s_i .

• If one D decays to a CP eigenstate, the number of events in *i*-th bin of another $D \to K^0_S \pi^+ \pi^-$ is

$$M_i = K_i + K_{-i} \pm 2\sqrt{K_i K_{-i}} c_i.$$

 \Rightarrow constrain c_i .

 c_i, s_i measurement has been done by CLEO and can be done in future at BES-III.

ϕ_3 : Optimal binning and CLEO measurement of c_i, s_i

Binned analysis reduces stat. precision.

Can improve this by choosing a binning inspired by $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ model. [CLEO collaboration, PRD **82**, 112006 (2010)]

Optimized $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$ binning using BaBar 2008 measurement.

Measured c_i, s_i values and predictions by Belle model

Optimal binning depends on model, but ϕ_3 does not. Bad model \Rightarrow worse precision, but no bias!

Recent EW results from Belle

$\phi_3: B^{\pm} \to DK^{\pm}, D \to K^0_S \pi^+ \pi^-$ signal selection

Use 711 fb⁻¹ sample (772M $B\overline{B}$ pairs). Belle preliminary Data reprocessed with new tracking \Rightarrow improved efficiency (12% \rightarrow 16%)

Signal selection variables: $M_{\rm bc}$, ΔE , event shape (cos $\theta_{\rm thr}$, "virtual calorimeter" Fisher discriminant). 4D unbinned fit to get signal yield. Signal yield: 1176 ± 43 events (\sim 55% more data than in prev. analysis)

ϕ_3 : Dalitz plots of $D \to K_S^0 \pi^+ \pi^-$ decay from $B^\pm \to D K^\pm$

Belle preliminary

Dalitz plots for signal-enriched region: $(M_{\rm bc} > 5.27 \text{ GeV}/c^2, |\Delta E| < 30 \text{ MeV}, \cos \theta_{\rm thr} < 0.8).$

Fit signal selection distribution separately in bins

$\phi_3: B^{\pm} \to DK^{\pm}$ fit results

Simultaneous fit to signal selection variables in all bins. Belle preliminary Free parameters: (x, y), normalization, background fractions in bins.

$$y_{+} = -0.050^{+0.052}_{-0.055} \pm 0.011 \pm 0.021$$

 $corr(x_+, v_+) = +0.059$

1st error is statistical, 2nd — systematic, 3rd — c_i, s_i precision.

This analysis was done in close communication with CLEO

I think, this is the beginning of a beautiful friendship.

Two new preliminary Belle results on UT angles with full statistics (711 $\rm fb^{-1})$

- $\sin 2\phi_1$ measurement in "golden modes" $B \rightarrow J/\psi K_S^0, B \rightarrow J/\psi K_L^0, B \rightarrow \psi(2S) K_S^0, B \rightarrow \chi_{c1} K_S^0$ $\sin 2\phi_1 = 0.668 \pm 0.023 \pm 0.013$ Now the most precise measurement of this quantity.
- First ϕ_3 measurement with binned Dalitz plot analysis of $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$.

$$\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.2(syst) \pm 4.3(c,s))^{\circ}$$

Precision comparable to model-dependent analysis First try of novel procedure to be used at LHCb and Super B factories.

> More Belle results with full sample to come soon. (When life in KEK is back to normal)

Backup

Signal selection

In $\Upsilon(4S)$ decays, pairs of *B* mesons are produced near threshold. $E_B = E_{\rm CM}/2$, small CM momentum (300 MeV/*c*).

Selection variables:

- CM energy difference $\Delta E = \sum E_i - E_{\rm CM}/2$
- *B*-meson beam-constrained mass $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 - (\sum p_i)^2}$
- Event shape variables:

 ϕ_3 : Flavor-tagged $D^* \to D\pi$, $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$

Use momentum range $1.8 < p_D < 2.8 \text{ GeV}/c$ to cancel efficiency shape difference with $B^{\pm} \rightarrow DK^{\pm}$ (with $p_D \simeq 2.3 \text{ GeV}/c$)

2D fit in $(M_D, \Delta M)$ in each bin.

 $426900\pm800 \text{ events}$

 $10.1\pm0.5\%$ background

 ΔM projections in bins

Recent EW results from Belle

 $B^- \rightarrow DK^-$

 $B^+ \rightarrow DK^+$

ϕ_3 : Systematic errors

Systematic errors in units 10^{-3} .

Source of uncertainty	Δx_{-}	Δy_{-}	Δx_+	Δy_+
Dalitz plot efficiency	4.8	2.0	5.6	2.1
Crossfeed between bins	0.4	9.0	0.6	3.0
Signal shape	7.3	7.4	7.3	5.1
u, d, s, c continuum background	6.7	5.6	6.6	3.2
$B\overline{B}$ background	7.8	12.2	7.2	6.1
$B^\pm o D \pi^\pm$ background	1.2	4.2	1.9	1.9
Flavor-tagged statistics	1.5	2.7	1.7	1.9
Fit bias	3.2	5.8	3.2	5.8
c_i, s_i precision	10.1	22.5	7.2	17.4
Total without c_i, s_i precision	±14.0	±19.4	±14.0	±11.3
Total	±17.3	±29.7	±15.7	±20.7

Anton Poluektov