PURDUE UNIVERSITY.

Karolos Potamianos

Young Scientists Forum Rencontres de Moriond EW 2011 13-20 March 2011, La Thuile

Why $\not\!\!E_T + b$ -jets ?

Interesting signature in searching for both SM and BSM physics

- ► $ZH \rightarrow \nu \nu b \bar{b}$ is one of the most sensitive decay modes for a low mass Higgs;
- $ZZ \rightarrow \nu \nu b \bar{b}$ is on the road to the Higgs;
- Sensitive to single top, mainly through hadronic τ decays;
- SUSY: $\tilde{b}\bar{\tilde{b}} \rightarrow b\tilde{\chi}^0 \bar{b}\tilde{\chi}^0$;
- Technicolor: $\rho_T^{\pm} \rightarrow Z \pi_T^{\pm} \rightarrow \nu \nu b \bar{q}$;

Extra acceptance from W decays

- Hadronic \(\tau\) decays (\(\tau\) ID not very efficient);
- Also, the e/μ acceptance is not very high;
- Thus, this signature collects 50% of the leptonic W decays at CDF;
- So, we are sensitive to $WH \rightarrow \ell \!\!\!/ \nu b \bar{b}$, $WZ \rightarrow \ell \!\!\!/ \nu b \bar{b}$, and $\rho_T^{\pm} \rightarrow W^{\pm} \pi_T^0 \rightarrow \ell \nu b \bar{b}$;

The Challenges

Pre-selection cuts are not enough for sensitive analysis

- ▶ We reject mis-measured events (with $\not E_T$ collinear to a jet), and require *b*-jets,
- ▶ Yet, we have low S/B : 1/50 (Single Top), 1/150 (WZ/ZZ), 1/500 (SM Higgs);
- We have to do something more to further reject the backgrounds;

Intrinsic $\not\!\!\!E_T$ vs. instrumental $\not\!\!\!\!E_T$

How we measure $\not\!\!E_T$

- Typically provided by the transverse energy imbalance $(\not\!\!E_T)$ in the calorimeter;
- We also use the transverse momentum flow imbalance (p_T) from the spectrometer;
 - ▶ p_T largely correlated with $\not\!\!\!E_T$ in presence of neutrinos (or $\tilde{\chi_0}$, etc.);
 - ▶ Very different for instrumental \not{E}_T : \not{p}_T and \not{E}_T <u>either correlated or anti-correlated</u>;

A Neural Network to reject QCD

We combine novel variables to identify instrumental $\not \! E_T$ and distinguish it from "real" $\not \! E_T$.

Performance

A Neural Network to reject QCD

Every input variable is validated in several control regions. The neural network output is also checked for mis-modeling.

S/B		
Single Top	1/20	(×2.5)
<i>WZ/ZZ</i>	1/50	(×3.0)
SM Higgs	1/200	(×2.5)

Performance

Signal acceptance	90-95%
Multi-jet rejection	$\sim 90\%$

Karolos Potamianos (Purdue U.)

Search for rare SM processes in $\not\!\!{E}_T + b$ -jets

CDF Analyses in the $\not\!\!E_T + b$ -jets signature

Single top production: part of observation

CDF Analyses in the $\not\!\!E_T + b$ -jets signature

Top pair production: Cross-check using well understood signal.

CDF Analyses in the $\not\!\!E_T + b$ -jets signature

SM Higgs: among most sensitive low mass (< 135 GeV/ c^2) channels

An interesting channel for SM and BSM physics

- Many SM and BSM yield $\not \! E_T + b$ -jets;
- This channel has very large acceptance;
- Very sensitive provided we get rid of the large QCD multijet-background;

A powerful tool to reject QCD multi-jet

- Novel combination of kinematic variables (exploits correlations);
- The technique is very generic: works with many different signals;
- It is as powerful as a lepton ID, in a channel with much larger acceptance;
- Made three SM analyses possible at CDF (and similarly at DZero);
- ▶ We plan to use this technique to measure $\sigma(WZ/ZZ \rightarrow \not E_T + b\bar{b})$;

Thank You

Backup Slides

Data-driven model and control regions

Data-driven model for multi-jet (MJ) production

- Why? Efficiency is so low that we would need a very large QCD Monte Carlo sample;
- Data-driven method: deriving a (4D) Tag-Rate-Matrix from QCD MJ sample (> 99.9%);
- Applying the matrix to the (pre-tag) data to get b-tagging probability for each event;
 - We apply the matrix to the Monte Carlo and subtract to avoid double counting;
- Excellent agreement in the shape. Normalization obtained from control region;

Control regions

- TRM: training sample for Tag-Rate-Matrix;
- QCD: cross-check for the data-driven model;
- EWK: cross-check for the EWK backgrounds (MC);
- QCD Scale Factor Check: derivation of the QCD MJ scale factor (~ 1);
- New: extra regions with high NN output in pre-tag;

More on the QCD multi-jet (MJ) model

Components of multi-jet bakground

- ▶ The multi-jet background in the past analyses consisted mainly of QCD + EWK mis-tags;
- We are now using a new modeling in which the EWK mis-tags are modeled separately;

Checking the modeling: Control Regions

- Every input to the NN is checked in more than 5 orthogonal control regions;
- We check both the data-driven and Monte Carlo modeling;
- Excellent agreement throughout;

