COUPP

First data from a deep-site bubble chamber
The COUPP Collaboration

University of Chicago
Juan Collar (PI, spokesperson), C. Eric Dahl, Drew Fustin, Alan Robinson, Matthew Szydagis

Indiana University South Bend
Ed Behnke, Joshua Behnke, Austin Conner, J. Henry Hennefeld, Ilan Levine (PI), Andrea Palenchar, Tim Raymond, Tina Shepherd, Brendan Sweeney

Fermilab
Steve Brice, Dan Broemmelsiek, Peter Cooper, Mike Crisler, Jeter Hall, Martin Hu, Hugh Lippincott, Erik Ramberg, Andrew Sonnenschein, Fermilab Engineers and Technicians
Outline

- Bubble Chamber Review
- COUPP 4kg @ MINOS, results
- COUPP 4kg @ SNOLAB, status and results
- COUPP 60 @ MINOS, status
Review

- Superheated CF_3I target
- Particle interactions nucleate bubbles
- Cameras capture bubbles
- Chamber recompresses after each event

Dahl, Moriond EW
March 18, 2011
Review

- Superheated CF$_3$I target
- Particle interactions nucleate bubbles
- Cameras capture bubbles
- Chamber recompresses after each event
Review

- Only proto-bubbles with $r > r_{\text{crit}}$ grow to be macroscopic.

- Critical proto-bubble requires minimum ΔE within minimum volume.

- Recoil must be over thresholds in both E and $\Delta E/dx$.

No sensitivity to γ's or β's, but α's do make bubbles.
3 basic event types

- **alpha-decays**
 - Nuclear recoil + 40 μm alpha track
 - U, Th chain impurities in fluid, especially radon and its daughters

- **neutrons**
 - Nuclear recoils, mean free path ~20 cm
 - Produced by cosmic muons, fission, and (α, n) reactions

- **WIMPs**
 - Single nuclear recoil (mean free path > 10^{12} cm)
Acoustic Discrimination

- Alpha louder when probing length scales <40 µm
- Acoustic emission peaks at ~10 µm

Daughter heavy nucleus (~100 keV) Helium nucleus (~5 MeV)

Observable bubble ~mm

~40 µm

~50 nm
COUPP 60 @ MINOS

First data, July 28, 2010

- Cosmic-induced neutron (2 bubbles)
COUPP 60 @ MINOS

First data, July 28, 2010

- Cosmic-induced neutron (1 bubble)
COUPP 60
@ MINOS

First data,
July 28, 2010

- Alpha-decay
 (1 bubble)
3 “WIMP candidates” could be:
- alphas
- neutrons
- WIMPs

Note un-vetoed 2-bubble event…

At least 74% alpha discrimination
COUPP 4kg @ MINOS, 2009

Spin–independent nucleon cross-section (cm²)

10^{-45} 10^{-44} 10^{-43} 10^{-42} 10^{-41} 10^{-40}

WIMP Mass (GeV)

10^1 10^2 10^3

COUPP (MINOS 2009)
CDMS (SUF)
XENON10
COUPP (4kg deep*)
COUPP (4kg deep**)
CDMS

* 3 months with zero background
** 1 year with zero background

Dahl, Moriond EW
March 18, 2011
Sudbury, Ontario

6800 Feet Down
COUPP 4kg @ SNOLAB

Installation Begins:
July 27, 2010

July 27, 2010, DAQ and Pressure Control
Move Underground
COUPP 4kg @ SNOLAB

One leaky accumulator, a few leaky plumbing lines, a slightly overstretched bellows, and one unusual occurrence report later…

Installation Ends: Nov 3, 2010

Nov 3, 2010, Shield is completed
Physics data begins!

Dahl, Moriond EW
March 18, 2011
COUPP 4kg @ SNOLAB

- 18.1 live-days at 7 keV threshold
- 21.5 live-days at 10 keV threshold
- 3.3 kg fiducial cut (out of 4.0 kg)

Counts

0 1 2 3 4 5 6 7
Acoustic Parameter

Background
AmBe neutron source

130 kg-days

Dahl, Moriond EW
March 18, 2011
COUPP 4kg @ SNOLAB

- 5.3 alpha-decays / kg-day
 - 80% 222Rn, 218Po, 214Po triplets
- >98% alpha rejection

Dahl, Moriond EW
March 18, 2011
COUPP 4kg @ SNOLAB

- 2 three-bubble events in this dataset!

- Single-bubble background of ~0.05 events/kg-day from neutrons (*big* statistical error bar)

- O(1) event/year expected from cosmogenic and environmental neutrons

Dahl, Moriond EW
March 18, 2011
Neutron sources!

- Piezoelectric is the ceramic PZT (Lead zirconate titanate)
- 4.2 ppm ^{238}U
- 1.4 ppm ^{232}Th
- plus lots of modern lead with ^{210}Pb
- Both fission and (α,n) on light elements
- *Preliminary* calculation gives ~1 neutron/day from 8 acoustic sensors
Neutron sources!

- Currently screening alternate piezoelectric materials
- Lower background ceramics are a solution for the 4kg chamber, for 3 months background free
- Plan to refit chamber with low background components this spring
COUPP 4kg @ SNOLAB

- Evidence for 2nd, time-varying background
 - Clusters of 3 and 5 events in 3 and 9 hours, respectively at 7 keV threshold
 - Less clustering at 10 keV threshold, but several events are outliers at high AP
- Several plausible sources, still investigating…

Dahl, Moriond EW
March 18, 2011

130 kg-days
COUPP 60, milestones

- ~3 weeks successful data taking at MINOS
- Successful commissioning of new pressure control hardware, PLC, DAQ system
- Demonstration of acoustic discrimination in large chamber
COUPP 60, final hurdles

- Chemistry
 - CF_3I reacting with impurities or illumination
 - High bubble nucleation rate at $\text{CF}_3\text{I}-\text{H}_2\text{O}$ interface

- Optics, Imaging
 - Higher resolution and frame-rate desired
 - More uniform illumination, lower intensity light source

- Neutron Backgrounds
 - Acoustic sensor replacement needed
 - Screening of other elements ongoing…
Conclusions

- 130 kg-days from a bubble chamber deep underground
- >98% acoustic alpha discrimination, will get better as we eliminate backgrounds
- First direct detection experiment limited by internal neutron background
- Will refit 4kg chamber with low background components this spring
- Progress continues on COUPP 60, with much input from 4kg chamber