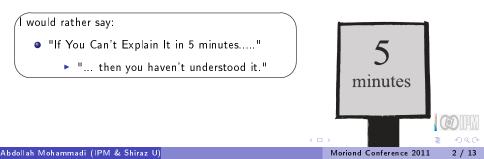
Observation of $\mathcal{W} ightarrow au oldsymbol{ u}_{ au}$ at CMS

Abdollah Mohammadi

IPM & Shiraz University, Iran on behalf of CMS Collaboration

Moriond Conference 2011

э

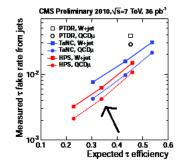

Abdollah Mohammadi (IPM & Shiraz U)

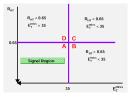
★ 3 > < 3</p>

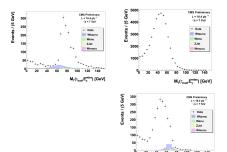
A famous sentence says:

- "If You Can't Explain It To Your Grandmother....."
 - "... then you haven't understood it."

Introduction


- Tau leptons are an important probe for new physics
- The largest sources of tau leptons at the LHC comes from Z o au auand $W o au
 u_ au$ production
- $W \to \tau v_{\tau}$ production has a cross section which is an order of magnitude larger than $Z \to \tau \tau$ but requires a good understanding of the reconstruction of hadronic taus and missing transverse energy (E_T^{miss})
- $W o au
 u_{ au}$ is the main background for charged Higgs boson searches in the au_{had} final state
- $W o au v_{ au}$ production has been studied with 18 pb^{-1} of pp data at 7 TeV with the CMS detector


Events Selection (A needle in a hayStack!)


- tau- E_T^{miss} cross-trigger
- tau p_T > 30 GeV, $|\eta| <$ 2.3 and leading track p_T > 15 GeV
- Identified and Isolated tau (HPS algorithm [backup])
- Rejecting muons or electrons fake taus
- Rejecting those events with good electron and muons
- $E_T^{miss} > 35$ GeV

•
$$R_{HT} = \frac{tau \, p_T}{\sum jet \, p_T} > 0.65$$

Amount of QCD from data (ABCD Method)

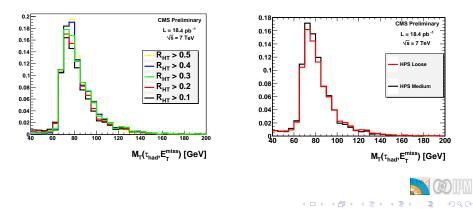
QCD is the main background

After applying all cuts except E_T^{miss} and R_{HT} , divide their phase space to 4 regions.lf:

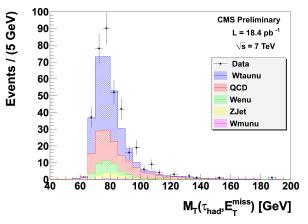
- In Region B,C and D, QCD dominates in data (left bottom)
- Low correlation between E_T^{miss} and R_{HT} (in backup)

Number of QCD is A = B*D/C

At the end:

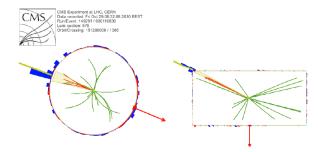

- Number of signal events : 174 ± 3
- Number of electroweak BG : 46 ± 2
- Number of QCD events : 109 ± 6
- Number of selected events in data: 372

Errors are statistical only, we have not yet assessed systematic uncertainties.



Shape of QCD from data

- To get M_T(τ, E_T^{miss}) shape of QCD, loosen cuts on R_{HT} and isolation in data.
 The shape does not change alot with different selection criteria.
- we use $R_{HT} > 0.3$ and looser isolation. (at this point, QCD is still dominant.)

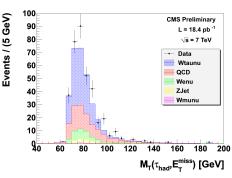

Transverse Mass

- QCD is the main background and its shape is obtained from data and normalized to the yield from ABCD method.
- EWK backgrounds are from simulation.

• Very clean signal obtained on top of the QCD and EWK backgrounds.

Wtanu candidate with a 3 prong hadronic tau

m_{vis} = 0.87 GeV

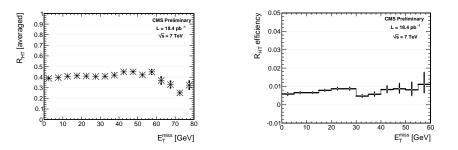

 $τ_{had}$ (3 prong): $p_T = 33 \text{ GeV}$ η = -1.45 $p_T(lead. track)- 23 \text{ GeV}$ $E_T miss= 43 \text{ GeV}$ $m_T(τ, υ) = 73 \text{ GeV}$

イロト イポト イヨト イヨト

Summary

- We have observed a significant signal for $W \rightarrow \tau v_{\tau}$ in the final state with a hadronic tau and missing transverse energy using 18 pb^{-1} of CMS data.
- The main background comes from QCD multi jet production and the yield and shape have been estimated from data.

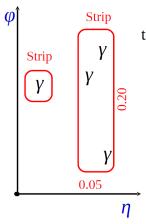
BackUp



3

Abdo∥ah Mohammadi (IPM & Shiraz U)

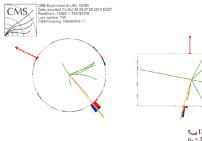
イロト イヨト イヨト イヨト


Correlation between R_{HT} and E_T^{miss}

• Each plot shows low correlation between R_{HT} and E_T^{miss}

💦 🔘 iph

Hadron Plus Strip Algorithm



Build all possible taus that have a 'tau-like'multiplicity from the seed jet π^+ $\pi^+ \pi^0$ $\pi^+ \pi^+ \pi^-$

> tau that is 'most isolated' with compatible m_{vis} is the final tau candidate associated to the seed jet

Wtanu candidate with a 1 prong hadronic tau

m_{vis} = 0.87 GeV

 $\begin{array}{l} \tau_{had} \, (1 \ prong, 1 \ \pi^0): \\ p_{T} = 33 \ GeV \\ \eta = -0.25 \\ p_{T} (lead. \ track) = 21 \ GeV \\ E_{T} \ miss = 57 \ GeV \\ EM-fraction = 0.38 \\ m_{T}(\tau, \upsilon) = 88 \ GeV \end{array}$

э

イロト イヨト イヨト イヨト