Rencontres de Moriond EWK

Robert Roser
Fermilab
20 March 2011
This is my first conference summary talk – I hope it doesn’t show...

I didn’t count how many talks – but there was a large number, each with an impressive array of results. Trying to do 1 page/talk seemed pointless

I made choices to cover a sampling of topics

I am sorry if I left yours out. For a better summary – look at the talks on-line. I can’t do any of the talks or results justice
The Key Questions facing Particle Physics

- Origin of Mass and Matter
 - Origin of EWSB
- Unification of the Forces
- Fundamental Symmetry of Forces and Matter
- Unification of Quantum Physics and General Relativity
- # of space/time dimensions
- What is Dark Energy?
- What is Dark Matter?
Solutions???

In all proposed solutions, new particles should emerge at the TeV scale or much lower

- **Supersymmetry** – light Higgs, unification of forces, dark matter particle
 - Particles at TeV scale or below

- **Technicolor** – new strong interactions produce EWSB
 - Extension of SM gauge group (little Higgs, GUTS etc)

- **Extra Dimensions** (are introduced)
 - Mgravity ~ Mewk -> Hierarchy problem solved
 - New particles at TeV scale

- Anyone Inspired this week?....?
2011-2013: Seminal Period for our Field

Our View of the world will change in the next few years – Today’s experiments will drive the way we look at our Universe

- Tevatron will complete its analysis and LHC will have amazing reach with very substantial data sets
- θ_{13} will be measured (double Chooz, T2K, ..)
- Dark Matter Searches
- Turn-on of “Intensity Frontier” at Fermilab
Key Points

- LHC should remove “the fog” at the TeV scale in the coming few years
 - Is there a Higgs Mechanism?
 - Is Super Symmetry grounded in data?
 - What is dark matter

- These answers (available in a few short years or less) will determine the direction of our field
 - High Luminosity LHC upgrade?
 - Required LHC Energy Upgrade
 - CLIC vs ILC vs muon collider vs ...

- Neutrino Sector in a similar situation with θ_{13}
Using this graphic in the US to articulate the HEP strategy to funding agencies
Dream Machine is up and running – with every expectation for >5 fb-1 by end of 2012

Old “workhorse” still colliding – with ~12 fb delivered by October 2011 – Lots of exploration in data still remain
Current Tools Working Well!!!

I expect LHC to exceed luminosity expectations in 2011 and 2012!!!

Integrated proton luminosity 2010 ~ 48 pb$^{-1}$

10.5 fb$^{-1}$ delivered, ≈ 9 fb$^{-1}$ acquired
LHC - Amazing level of Maturity

CMS Preliminary

$\sqrt{s} = 7$ TeV, $L_{\text{int}} = 40$ pb$^{-1}$

b-tagging data vs MC

MET in pp $\rightarrow + X$

ATLAS Preliminary

ATLAS

$\rho, \omega, \phi, J/\psi, \psi'$, $Y(1,2,3S)$

$\sqrt{s} = 7$ TeV, $L_{\text{int}} = 40$ pb$^{-1}$

$\mu^{+}\mu^{-}$

Data $\int L \ dt = 37$ pb$^{-1}$

MC $Z \rightarrow ee$

Fit to data $|\eta|<1.37$

$\sigma_{\text{data}} = 1.51 \pm 0.10$ GeV

$\sigma_{\text{MC}} = 1.29 \pm 0.03$ GeV

Visible Mass [GeV]

Data vs Sim.

TCHP Discriminator
Higgs Decay modes vs Mass

- $b\bar{b}$
- WW
- ZZ
- tt
- $\tau\tau$
- gg
- $c\bar{c}$
- $\gamma\gamma$
- $Z\gamma$

Branching ratios vs M_H [GeV]
Higgs Low Mass - Tevatron

- Higgs Searches can be divided up into 2 sections – low mass 114-135 – this is dominated by bbbar. The upper range (135-185) is dominated by WW. Higgs >185 is not accessible at the Tevatron.
- For Low mass, the Tevatron relies on Associated production (WH, ZH(llbb) and ZH (ννbb)). Other channels do contribute at a lesser amount but are included to boost the sensitivity.

Summer 2010 Result – skipped Winter Conf. update in order to maximize improvements for EPS 2011.

- Upper limit for $m_H=115$ GeV/c² of $1.56 \times \sigma_{SM}$ @95% CL
- Tevatron-only exclusion at 95% CL of $100 < m_H < 109$ GeV/c²
CDF excludes SM Higgs for $158 < M_H < 168$ GeV/c2

Do excludes SM Higgs for $163 < M_H < 168$ GeV/c2
SM Higgs boson excluded at 95% CL for $158 < m_H < 173$ GeV

Expected exclusion at 95% CL for $153 < m_H < 179$ GeV

Compare to summer 2010 expected exclusion of $156 < m_H < 173$ GeV
Tevatron Combination

SM Higgs of $162 < m_H < 166$ GeV excluded @99.5% CL
At masses between 114-135, there are a cocktail of final states that get combined. For 135 and up, its $H \to WW$ and $H \to ZZ$

LHC owns the landscape above ~185
LHC already competitive with Tevatron
LHC Higgs -> WW Results

CMS Preliminary, \(\sqrt{s} = 7 \text{ TeV}, L_{\text{int}} = 35 \text{ pb}^{-1} \)

![CMS Plot]

![ATLAS Plot]

<table>
<thead>
<tr>
<th>95% CL Limit for (M_H = 160 \text{ GeV})</th>
<th>CMS (Bayesian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>3.0 x SM</td>
</tr>
<tr>
<td>Observed</td>
<td>2.1 x SM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>95% CL Limit for (M_H = 160 \text{ GeV})</th>
<th>ATLAS ((CL_S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>2.7 x SM</td>
</tr>
<tr>
<td>Observed</td>
<td>2.1 x SM</td>
</tr>
</tbody>
</table>
MSSM $H \to \tau\tau$ at LHC
LEP + Tevatron (Fall 2010):
- $\text{CL}_{s+b}^{2\sigma}$ central value $\pm 1\sigma$:
 $$M_H = 120.2^{+17.9}_{-5.2} \text{ GeV}$$
- 2σ interval:
 $$-2\ln Q: \, [115,152] \text{ GeV}$$
 $$\text{CL}_{s+b}^{2\text{-sided}}: \, [114,155] \text{ GeV}$$

Fit with LEP + Tevatron + LHC ($H \rightarrow WW$) searches (Moriond 2011):
- Central value unchanged
- 2σ interval:
 $$-2\ln Q: \, [115,137] \text{ GeV}$$
 $$\text{CL}_{s+b}^{2\text{-sided}}: \, [114,14?] \text{ GeV}$$
What to look forward to...

Atlas ≈ CMS

Above is single expt lum so divide by two when comparing to plot on left!
Searches Beyond the Standard Model
Search Results Shown...

CMS

- 2-lepton searches
 - same sign + jets + “MET”
- 1-lepton search
 - e or mu + jets + “MET”
- 0-lepton search
 - jets + “MHT”
- Inclusive search
 - (e or mu) + jets, R & MR

ATLAS

- Jets + lepton + MET
- Jets +MET
- Jets + b-tag+MET
- Dilepton+ MET
- Multileptons+ MET
- Photons + jets +MET
- Slow Moving Particle

Small Subset of LHC Search knowledge!!!
Searching For New Physics... CMS Style

CMS preliminary
36.1 pb⁻¹, √s = 7 TeV
1 e, >=4 jets

CMS 2010 Preliminary
√s=7 TeV

HAD BOX

- DATA
- Total SM
- QCD
- W+jets
- Z+jets
- Top+X
- LM0
- LM1

Integrals

- NLO observed limit
- NLO expected limit
- LO observed limit

- D0 \chi⁺, \chi⁻

- LEP2 \chi⁺, \chi⁻

- CDF \chi⁺, \chi⁻

- CMS

- CMS preliminary

m_{12} (GeV)

m_0 (GeV)

m_{12} (GeV)

m_0 (GeV)

m_{12} (GeV)

m_0 (GeV)

m_0 (GeV)

m_{12} (GeV)

M_R [GeV] (R > 0.5)

Events / 40 GeV

CMS, L_in = 35 pb⁻¹, √s = 7 TeV

τ = LSP

NLO Observed Limit

NLO limit (efficiency model)

LEP2 \chi⁺

LEP2 \chi⁻

D0 \chi⁺, \chi⁻

Observed

Background prediction

CMS, L_in = 35 pb⁻¹, √s = 7 TeV

τ = LSP

NLO Observed Limit

NLO limit (efficiency model)

LEP2 \chi⁺

LEP2 \chi⁻

D0 \chi⁺, \chi⁻

Observed

Background prediction

CMS 2010 Preliminary

√s=7 TeV

Integrals

- NLO observed limit
- NLO expected limit
- LO observed limit

- D0 \chi⁺, \chi⁻

- LEP2 \chi⁺, \chi⁻

- CDF \chi⁺, \chi⁻
Searching For New Physics..ATLAS Style

ATLAS Preliminary

\[\int L dt = 35 \text{ pb}^{-1} \]

\[m_{\text{eff}} \text{ [GeV]} \]

\[\nu \rightarrow \tau \tau \]

\[\text{ Effective mass distribution} \]

\[\text{Events / 50 GeV} \]

\[\text{Data/MC} \]

\[\text{Events / 10 GeV} \]

\[\text{Events / 50 GeV} \]

\[\text{Data/SM} \]

\[\text{MSSM Phenogram} \]

\[\text{2-lepton SS analysis} \]

\[\text{L}_{\text{int}} = 35 \text{ pb}^{-1}, s = 7 \text{ TeV} \]

\[\text{Data 2010 (smearec)} \]

\[\text{Data 2010 (simulated)} \]

\[\geq 2 \text{ jets} + E_T^{\text{miss}} \]

\[W \rightarrow \nu \tau \]

\[b \bar{b} \]

\[\tau \tau \]

\[\nu \tau \]

\[Z(700 \text{ GeV}) \]

\[\nu \gamma \rightarrow \nu \gamma \]

\[\nu \gamma \rightarrow \tau \tau \]

\[\text{Single top} \]

\[\text{W production} \]

\[\text{Z production} \]

\[V(550 \text{ GeV}) \]

\[V(650 \text{ GeV}) \]

\[V(700 \text{ GeV}) \]

\[\text{QCD production} \]

\[g(500 \text{ GeV}), b(380 \text{ GeV}) \]

\[\text{Top} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]

\[\text{W} \]

\[\text{Z} \]

\[\text{Jet} \]

\[\text{b} \]
Is SUSY on its last legs...

- LHC experiments are really pushing into SUSY space already
- So far, SM is holding up well – no very “low hanging fruit”
- Most if not all of the interesting mass regions should be explored by LHC this year!
- SUSY better speak up soon if it’s there!
Top Production Asymmetry A_{FB}

- Recap:
 - Interference between diagrams (LO and NLO) gives small C violation
 - SM $A_{FB} \sim 5\%$ (@NLO)
 - CDF +D0 both see a discrepancy

Experimental Results

- **D0** $l+j$ $A_{fb} = 8 \pm 4\%$, $A_{fb}(SM) = 1 \pm 1.5\%$ 2σ
- **CDF** $l+j$ $A_{fb} = 15 \pm 5\%$, $A_{fb}(SM) = 5 \pm 1.5\%$ 2σ
- **CDF** dil $A_{fb} = 42 \pm 16\%$, $A_{fb}(SM) = 5 \pm 15\%$ 2σ

If CDF looks at $M_{tt\bar{t}}$ dependence; 3.2σ
Top and EWSB

- Tevatron Top Mass is 173.3 +- 0.6 +- 0.9 GeV/c^2
- CDF Combination now = Tevatron uncertainties
- Dominated by systematic uncertainties – people are working hard on them
- New TeV Top Mass in summer
 - It will take some time for LHC to reach this level of precision
Top Mass is precise but what does it mean?

- Theorists tell us pole mass and running mass can differ by ~10 GeV
- Experiments measure something close to the pole mass
- Can we provide a translation?
- D0 Measures XS and its dependence on Mtop

\[M_{\text{top\ pole}} = 167.5^{+5.4}_{-4.9} \text{ GeV/c}^2 \]
Single Top at LHC

\(t \) channel

\(\sigma \approx 62 \text{ pb} @ 7 \text{ TeV} \)

Cut based analysis using angular information!

\[= 83.0 \pm 29.6 \pm 9.1 (\text{lumi}) \text{ pb} \]

NICE!
Some Personal Comments

- Even when you do collider physics for a living, a conference forces you to step back and take stock in what we as a community have accomplished. Impressive!
- The Tevatron has taken us far in understanding the Standard Model but has sadly not been able to look beyond and peel back the next layer in the onion of understanding. Now it’s the LHC’s turn!
- The legacy of the Tevatron will be in its discovery of the top quark and defining its properties, W&Z physics and perhaps that one can do serious b physics in a hadron collider environment. It is also playing a critical role in the Higgs story.
- The Tevatron has laid the groundwork in terms of sophistication of its physics object algorithms and analysis techniques. The Tevatron has shown us to never give up. (single top, W mass precision, Oscillation frequency in B_s) just to name a few
- The LHC analyses being shown are remarkable. Learning from the Tevatron and then taking this sophistication to the next level already. The detectors are mind-boggling and performing extremely well. If NP is there to be found – LHC WILL!
- I believe that the slow LHC start has not hurt so much. The impressive performance of the detectors, algorithms and agreement to MC is remarkable – a year w/o that distracting data didn’t hurt. 😊 A tribute to LHC physicists for staying focussed
Flavor Physics
B factories have been a remarkable success over the past decade – really refining our understanding of the Unitarity Triangle.

The easy components are done and now making good progress on the harder triangle elements.

Super B Factories now approved in Japan and Italy have given new life to BaBar and Belle.

The overarching goal remains the same – to overconstrain the unitarity triangle in order to be sensitive to new physics in the loops.
The Angle γ has been very hard to measure!

Belle (and BaBar) have nearly done the impossible

The measurement of γ comes from the interference of two diagrams

Use final states accessible from both D and \bar{D} ($K_s\pi^+\pi^-$ and KsK^+K^-)

722M b-bbbar pairs were considered!!! Measured the strong interaction and phase!

Used binned dalitz plot and count events in each one
Dimuon Charge Asymmetry

- D0 6.1 fb⁻¹ analysis yields:
 \[A_{sl}^b = (-0.957 \pm 0.251(\text{stat}) \pm 0.146(\text{syst}))\% \]

- SM prediction:
 \[A_{sl}^b (\text{SM}) = (-0.023^{+0.005}_{-0.006})\% \]
 using prediction of \(a_d\) and \(a_s\) from A. Lenz, U. Nierste, hep-ph/0612167

- CDF Walking before it runs...
- Measuring Chi-bar as first step

\[
\bar{\chi} = \frac{\Gamma(B_{d,s}^0 \rightarrow \bar{B}_{d,s} \rightarrow l^+X)}{\Gamma(B_{all} \rightarrow l^\pm X)}
\]

- Result: \(\bar{\chi} = 0.126 \pm 0.008\) (LEP: 0.126 ± 0.004)
Analogous to neutral B_0 system. CP violation in B_s system is accessible through interference of decays with and without mixing.

- CP violation phase β_s in SM is predicted to be very small, $O(sin^2\theta)$
- New physics particles running in the mixing diagram may enhance β_s
Initial flavor of the B can be inferred

- Opposite side tagging – products of the other B
- Same side tagging – fragmentation of particles from signal B

Astonishing level of sophistication so soon after data taking! Speechless!
$B_s \rightarrow \mu\mu$

- $B_s \rightarrow \mu\mu$ is highly suppressed in the SM
- Some new physics models enhance the branching fraction significantly

Analysis Strategy is Classify B_s/d -> $\mu\mu$ in 2D bins

- Invariant mass of di-muon pair
- Multivariable discriminant that is flat for signal and pushes background to zero

$$BR(B_s \rightarrow \mu\mu) < 4.3 (5.6) \times 10^{-8} @ 90 \text{ (95\% CL)}$$
$$BR(B_d \rightarrow \mu\mu) < 1.2 (1.5) \times 10^{-8} @ 90 \text{ (95\% CL)}$$

Already Comparable with Tevatron
Next B Factory

Examples of BELLE II Physics Goals

- Measure UT (angles & sides) with much better precision. If new phases contribute to any measurable inconsistency of UT.
- CPV in $b \rightarrow sqq$ vs $b \rightarrow ccs$: Extra new phases in the penguin loop makes CPV parameters different. Typical accuracy in $\Delta S \sigma \approx 0.02-0.03$ for $B \rightarrow K^0 \phi (K^0, \eta)$ with 50ab$^{-1}$
- search for CPV in radiative decays $B \rightarrow K^0 (K^0_s, \pi^0) \gamma$ is a test of right-handed current in the penguin loop (CPV $\neq 0$).
- Rare decays $b \rightarrow sg(\gamma), B \rightarrow \tau\nu$. Even B_r's constrain mass of NP
- Electro-weak penguins $b \rightarrow s\mu\mu, see, svv$: B_r's, Q^2 distribution, FB asymmetry are sensitive to NP
- Rare tau decays
- Search for new particles, hadron spectroscopy
- Many more (see A.G. Akeroyd et al., arXiv:1002.5012)

50ab$^{-1}$ by 2022!!!
Initial Lum. of 8×10^{35} cm2/sec

Mind-boggling!!!
Next B Factory

1. Replace short dipoles with long ones
2. Redesign lattice to squeeze emittance
3. Provide for larger crossing angle
4. Nano beams 10’s of microns wide

Detector upgrades

- Higher event rates
- Improved particle Id
- Hermiticity
- Coping with radiation

Milestone of SuperKEKB

- 9 months/year
- 20 days/month
- We will reach 50 ab⁻¹ in 2020-2021.

Ground breaking ceremony 08/04/2011
Postponed!
I have never worked in b-physics. I think if I started young – I would have liked it. I blame Professor Ferbel!!

I marvel at the precision of the measurements from the b-factories and what was once considered impossible is now routinely done. There is a wealth of knowledge out there!

LHCb like ATLAS and CMS is remarkably advanced and already employs quite sophisticated analysis techniques for such a young experiment.

Looks to me like measurements in the last few years at the b-factories are getting incrementally better and the big gains have been in neglected channels

Judging from my Tevatron experience in Run II, to make significant progress – is luminosity sufficient or do we need a step in energy?
Neutrino’s
Lepton Flavor

Final Measurement of R_k with 40% of the data.

$R_k = \frac{B(Ke^2)}{B(K\mu^2)}$

Measured R_{μ_23} and setting very stringent bounds on charged Higgs.

In Excellent agreement with SM.

Studies of lepton universality violations are setting world class limits on new physics beyond the SM.
MEG Experiment

- Since neutrino’s mix, so should charged leptons. SM predicts this to be small $<10^{-45}$
- Looking for muon \rightarrow electron + gamma
- If found, sure indication of new physics
- Presented 2 months of 2009 data. Analysis of 3 mo 2010 data run very mature, ready this summer. Expected 09 sensitivity of a few 6×10^{-12} at 90% C.L.
- Goal is $\sim 10^{-13}$

$BR < 1.5 \times 10^{-11}$ @90% C.L. (preliminary)
Neutrino Parameters

- **T2K** – searching for a ν_e appearance in a ν_μ beam on a 295 km baseline
- **Initial 6mo Run in 2010**

 3.23×10^{19} POT = $15.5 \, \text{kW} \times 10^7 \, \text{sec}$

 - 90% C.L. sensitivity for $\sin^2(2\theta_{13}) \sim 0.35$

- 8 ν_μ observed at SK

 exclude $\sin^2(2\theta_{13}) > 0.5$ (normal hierarchy)

 90% C.L.

- **Sciboon**e completed its data run to measure neutrino and anti neutrino cross sections. First results out.
Neutrino Parameters

- **Double Chooz** – will search for $\sin^2(\theta_{13})$ down to 0.03.
- **Just starting!** Far detector built and filled, commissioned in early 2011.
- Detector yields look good and stable performance.
- Near detector Ready in 2012.
- **Minerva** – to measure nucleus neutrino XS. Starting up now at final.
Neutrino Telescopes

WIMPs can be trapped in the interior of the sun and ultimately will annihilate.

“Hard”= $\chi\chi \rightarrow WW$ or “soft”= $\chi\chi \rightarrow bb$

Neutrinos from W’s and/or b’s can be observed in deep detectors on earth like Ice Cube and Antares

Both Ice Cube and Antares have performed searches for point like sources

No Significant sources found!
IF observed, η is a majorana particle and we get information on absolute mass scale

Next generation experiments (CUORE, SuperNEMO, EXO, GERDA) aim at mass limits in range 40 – 100 meV, thus getting into the range of the inverted mass pattern.

- GERDA came on line in June 2010 with first String
- Currently doing background runs
- Bckg at 0.055 cts/(keV kg y)
- Phase 1 to start soon
- Expected phase 1 sensitivity of 230-390 with a phase 2 goal of 90 mev
Personal Thoughts

- Entering the era of Intensity Frontier – neutrino facilities are ramping up all over the world
- The Major Issues facing us are
 - What are the masses of the neutrino’s
 - Are neutrinos majorana or dirac?
 - Discovering CP violation in this sector
 - What is the value of θ_{13}
- Future expts and facilities are on hold until we know θ_{13}
- Precision neutrino physics is here and will only get better. Neutrino’s will play an important role along with the LHC and potentially lepton collider in understanding our world
Cosmic Frontier
Large Array Detectors

Large Array Detectors like Telescope Array Experiment and Pierre Auger are seeking to characterize ultra high energy cosmic ray.

Telescope array experiment
- Operational in 08 with trigger upgrades in 08 and 10.
- Hybrid spectrum consistent with HiRES

Pierre Auger
- Much improved energy spectrum
- Sharp ankle at 4ev, suppression of flux above 50Eev
- Consistent with GZK Suppression
Dark Matter Searches

- We have learned from cosmological observations that DM is “cold” do to heavy particles
- CDMS showed an exposure with 241 kg days taken between 2006 and 2008 in Soudan
- Cuts maximize sensitivity to nuclear recoil while minimizing bckg.
- Conservative (very) analysis approach where known events were NOT subtracted

Signal in CoGent not seen in CDMS
Dark Matter (2)

- Edeleweiss presented a 384 kg/d result
 - 5 events in WIMP band:
 20.8, 21.1, 21.8, 23.2, 172 keV
 - Expected background: < 2.9 evt

DAMA allowed region excluded for $M \chi > 90$ GeV (90% CL)

- Nobel liquids in part due to their ease in scalability and background rejection are at the forefront of sensitivity
Personal thoughts

- Investigation of dark matter is a joint effort between astrophysical and particle physics experiments
- Masses from accelerators will provide important interpretation of DM measurements.
- Dark Matter Check list!
 - Observe a positive signal in 2+ detectors
 - Deduce velocity dependence of DM candidates in local environment
 - Determine how many types of DM is out there
- We are due for a break here!!!
I very much enjoyed the YSM talks. They were very well presented and very informative. It's amazing how sophisticated you all are compared to when I was in your shoes... I learned something -- and I hope you did in putting these presentations together. Some plots that caught my attention.
What a Difference a Year Makes
and "will" make!!!
Conclusions.

- In this meeting, we have taken a few important steps in answering the big questions ahead of us.
- We have also demonstrated that the tools are working well to get those answers in the next few years.
- I would like you all to join me in thanking the organizers for a very productive, stimulating and enjoyable meeting.
- And a big thank you to all the speakers for a wonderful set of very clear presentations.
Private Plea...

- Particle Physics has in the past has one of the spearheads for growth
- Many new technologies have come out of what we do that has been of great benefit to society
 - Not to mention a better understanding of the world we live in
- We can continue to be that spearhead into the future
- PLEASE don’t take our funding for granted – we are not entitled – lobby for it! These are tough times
Moriond EWK

- Not sure who gets more out of this conference – attendee’s, speakers, or tevatron spokespeople...
- We use this conference as an important target to produce updated results – we start our planning for it back in September.
- Thank you – people want to come here – and we try hard to put on a good show!