

First Neutrino Oscillation Results from the T2K Experiment

Mark Hartz

(University of Toronto, York University)

for the T2K Collaboration

Results officially released at NEUTEL11:

http://neutel11.wordpress.com/2011/03/16/a -rubbia-results-from-t2k/ Rencontres de Moriond Electroweak Session March 13-20, 2011

03/19/11

T2K (Tokai to Kamioka) Experiment

- ~500 collaborators from 59 institutions in 12 countries
- Experiment's goals:
 - Search for $v_{\underline{e}}$ appearance in a $v_{\underline{u}}$ beam
 - Precise measurement of parameters governing $\boldsymbol{v}_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ disappearance

Aftermath of Earthquake

- The J-PARC facility and surrounding area was affected by the recent earthquake, but avoided the tsunami
- No T2K collaborators or J-PARC associated employees were injured in the quake
- The reactors at the JAEA site in Tokai are ok
- A preliminary inspection of the T2K facilities has been carried out, but a more detailed investigation must wait until power is completely restored (some time next week)
- To this end, restoration of power, water and gas systems at J-PARC is the highest priority
- We will know more about how T2K will be affected in the ensuing weeks

Oscillation & Interactions at T2K

Recontres de Moriond

n

03/19/11

р

T2K Overview

ND280 (Near) Detector

• 0.2 T UA1 magnet

Used in current analysis

- Fine Grain Detectors (FGD)
 - Scintillator bars (+ water target in FGD2) 2.2 tons v target
- Time Projection Chambers (TPC)
 - Better than 10% dE/dx resolution
 - 10% momentum resolution at 1 GeV/c

Important for future analyses

- POD π^0 detector
- Barrel and Downstream Electromagnetic Calorimeters
- SMRD muon detector installed in magnet yoke

SK (Far) Detector

- 50 kton (22.5 kton fiducial volume) water cherenkov detector
- ~11,000 20" PMT for inner detector (ID) (40% photo coverage)
- ~2,000 outward facing 8" PMT for outer detector (OD): veto cosmics, radioactivity
- Good reconstruction of <GeV events: $\Delta E/E \sim 10\%$ for two-body kinematics

Data Collected and Sensitivity

• 2010a dataset: collected from Jan. 2010-June 2010

- Data available for SK analysis: 3.23x10¹⁹ POT = 15.5 kWx10⁷ sec
- Stable running at 3.8×10^{13} protons/pulse at 3.52 sec rep. rate = 54 kW
- 90% C.L. sensitivity for sin²(2θ₁₃) ~ 0.35

SK Data Collection & Reduction

	From ±500 µs		N	PC	
	window around beam spills	Data	No oscillation	Oscillation $\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$ $\sin^2 2\theta_{23} = 1.0$	bG (12μs window)
	Fully-Contained	33	54.5	24.6	0.0094
Clear indication of oscillation in	Fiducial Volume, E _{vis} > 30MeV	23	36.8	16.7	0.0011
the 1-ring muon like sample	Single-ring μ-like (P _μ >200MeV/c)	8 (8)	24.6 (24.5 ±3.9)	7.2 (7.1 ±1.3)	-
	Single-ring e-like (P _e >100MeV/c)	2 (2)	1.9 (1.5 ±0.7)	1.5 (1.3 ±0.6)	-
	Multi-ring	13	10.2	8.0	-

Single Ring Samples (similar to samples used in the analyses):

- Event is fully containted inner detector
- In fiducial volume and visible energy is >30 MeV
- Event contains only 1 ring
- PID identifies ring as muon or electron

Analysis Flow for 2010a Data

Elux Prediction • Proton beam measurements • Hadron production data • MD280 Measurement • Inclusive v_{μ} CC measurement • Output: $R_{data1 MC} = N_{ND280}^{data} / N_{ND280}^{MC}$ • Simulate expected samples • Adjust normalization using ND280 measurement: ND280 measurement• $N_{SK}^{exp} = R_{data1 MC} \times N_{SK}^{MC}$

Neutrino Cross Sections

- Interaction models
- External cross section data

Evaluate systematics

• Evaluate convidence intervals (will only show v_e today)

Simulation of Neutrino Flux

Proton Beam Profile at the Target

- # of Protons: CT monitors with 2% uncertainty
- Beam Shape: SSEM and OTR with 0.5-1.0 mm uncertainty

Neutrino Flux Simulation

In target hadron production: FLUKA2008

Out of target simulation: GEANT3 (GCALOR)

Hadron Production Tuning

- Tune hadron production with data
- NA61/Shine: preliminary π^+ and π^- data with 20% uncertainty **S. Murphy at YSF3**
- Other external data used for kaons

Neutrino Flux and Uncertainty

Neutrino flux at SK broken down by neutrino parent particle

- Dominant uncertainties: pion and kaon production data (~20-40%)
- Other sources: proton beam profile, neutrino beam direction measurement (INGRID), hadron interaction lengths

Neutrino Interactions

- Uncertainties from:
 - Parameter variations in models, comparisons between models
 - Model comparisons to MiniBooNE, ulletSciBooNE and SK atmospheric data

Category

CC other

NC other

FSI error

NC coherent

NC $1\pi^0$

CC coherent π

CC OE

 $CC 1\pi$

Near Detector (ND280) Analysis

- Analysis using low level reconstructed objects
 - Use FGD hits and and tracks reconstructed in single TPC

 - 1529 events

ND280 Data vs. Prediction

Data vs. MC prediction for 2.88x10¹⁹ POT (not fitted: flux pred.+NEUT)

 $R_{data/MC} = 1.061 \pm 0.028 (stat.)^{+0.044}_{-0.038} (det. sys.) \pm 0.039 (phys. model)$

Includes: TPC-FGD matching, dE/dx pull distributions, TPC tracking efficiency

• Event selection criteria frozen before data collection to avoid bias

v _e Event Selection	v _µ Event Selection
Fully containted in inner	r detector fiducial volume
Visible energy > 100 MeV	Visible energy > 30 MeV
Number of	of rings = 1
PID identifies ring as electron like	PID identifies ring as muon like
No decay electrons detected	-
π^0 reconstructed mass < 105 MeV/c ²	-
Reconstructed v energy < 1250 MeV	_
_	Reconstructed μ momentum > 200 MeV/c

- v_{e} : Light pattern fit of π^{0} mass assuming 2 γ rings, cut removes 75% NC bgnd.
- $\nu_{_{e}}$ efficiency: 66% for signal, 1% for background (after interaction)
- $v_{e}^{}$ efficiency error: 7.6% for signal, 15.8% for background

SK v_e Expectation

Source	Expected Events	Systematic Error
Beam $v_{e}^{}$ Bgnd. (85% CCQE)	0.16	
v_{μ} Bgnd. (95% NC)	0.13	23.9%
v_{μ} -bar Bgnd.	0.01	
Signal v_{e} at sin ² (2 θ_{13})=0.1 +	1.20	19.5%
Total Bgnd.		

SK v Candiate Sample

2000 2500 3000 3500 4000

03/19/11

Number of Events

1000 1500

500

Times (ns)

T2K v_e Result

- Two independent analyses give consistent results
- Difference from confidence interval method:

T2K v_{μ} Result

• 8 v candidate events	Osc. Hypothesis	Expected Events	Syst. Error
observed at SK	No oscillation	22.81	3.19
• Exportation:	$\Delta m_{23}^{2} = 2.4 \times 10^{-3} \text{ eV}^{2}$	6.34	1.04
	sin²(2θ ₂₃)=1.0		

• Parameter fitting is underway, plan to release results in near future

Future Prospects

- Data collection since Nov. 2010 has quadrupled data set
 - Now 1.45x10²⁰ POT
 - Achieved 145 kW continuous running
- Sensitivity already ~0.1
- Given earthquake, data taking schedule is uncertain

Delivered proton#

Proton per pulse

- T2K collected 3.23x10¹⁹ POT for physics analysis during the 2010a physics run
- Have analyzed both $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ and $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ data samples
- The $\nu_{_{\!\!\!\!\mu}}$ sample at SK is consistent with previous $\nu_{_{\!\!\!\!\!\mu}}$ disappearance measurements
- From v_{e} data, we exclude sin²(2 θ_{13})>0.5 (normal hierarchy) at 90% C.L.
- We now have x4 the data on disk, moving $\sin^2(2\theta_{13})$ sensitivity to ~0.1 at 90% C.L.
- Earthquake has made near term data taking uncertain, but T2K is committed to bring the experiment back as soon as possible

Backup Slides

Why Off-axis?

- Pion decay kinematics:
 - Along beam direction, neutrino energy proportional to pion momentum
 - At finite angles, weak dependence on pion momentum
- 2.5° off-axis angle gives neutrino spectrum peaked at the oscillation maximum
 - More statistics in the oscillation region
 - Less feed-down from backgrounds at higher energy

Beam Direction Measurements

- MUMON and INGRID measurements in good agreement
- Beam direction is stable and within 1 mrad tuning goal

Particle ID with TPC dE/dx

Two dE/dx Cuts:

 $|\delta_E(\mu)| < 2.5, |\delta_E(e)| > 2.0 \quad \delta_E = dE/dx Pull$

- Cut on TPC dE/dx with muon hypothesis to select muons
- Cut on TPC dE/dx with electron hypothesis to exclude electrons

INGRID On-axis Detector

- 16 modules (14 in cross configuration)
- Modules consist of iron and scintillator layers
- Measures neutrino beam profile and rate

#

03/19/11

T2K

- Located downstream of beam dump (117 m from target)
- Silicon PIN photodiodes
- Ionization chamber
- Measures secondary muons from pion decays
- >5 GeV muons make it through beam dump (tail of distribution):

SK Event Sample

Systematic Errors:

	FCFV single-ring μ-like P _μ > 200MeV/c		FCFV single-ring e-like P _e > 100MeV/c		
	No osc.	Osc.	No osc.	Osc.	
SK recon.	8.4 %	12.8 %	41.2 %	38.8 %	
Flux	10.0 %	6.6 %	5.7 %	8.0 %	
Interaction	8.8 %	10.2 %	14.3 %	14.8 %	
Total	15.7 %	17.6 %	44.0 %	42.3 %	

SK v_e Reduction

SK v Event PDF Example

- Left: distribution of expected number of SK events with systematic errors applied
- Right: distribution after applying statistical error

SK v Analysis B Exlcuded Regions

SK v Distributions

Reconstructed E_v (MeV)

Systematic uncertainties by source for the v_a analysis

Error source	N_{SK}^{sig}	N_{SK}^{bkg}	N_{SK}^{s+b}	N_{ND}	N_{SK}^{bkg}/N_{ND}	N_{SK}^{s+b}/N_{ND}
SK Efficiency	\pm 7.6	± 15.8	± 9.5	± 0.0	± 15.8	± 9.5
Cross section	\pm 9.7	\pm 13.9	\pm 9.9	± 8.4	± 14.3	± 10.6
Beam Flux	\pm 22.0	\pm 18.1	\pm 20.5	\pm 19.8	\pm 8.9	± 11.9
ND Efficiency	± 0.00	± 0.00	± 0.00	$^{+5.6}_{-5.2}$	$^{+5.6}_{-5.2}$	$^{+5.6}_{-5.2}$
Overall Norm.	± 0.00	± 0.00	± 0.00	± 0.00	± 2.7	± 2.7
Total	\pm 25.2	± 27.8	± 24.7	$^{+22.2}_{-22.1}$	$^{+23.9}_{-23.8}$	+19.5 -19.4

Some cancellation of errors is seen due to near detector neutrino rate constraint

Detailed systematic uncertainties by source for the v_{a} analysis

Error source		N_{SK}^{sig}	N_{SK}^{bkg}	N_{SK}^{s+b}	N_{ND}	N_{SK}^{bkg}/N_{ND}	N_{SK}^{s+b}/N_{ND}
SK Norm.	f^{SKnorm}	\pm 1.41	\pm 1.41	\pm 1.41	$\pm \ 0.0$	\pm 1.41	± 1.41
SK Energy Scale	f^{Energy}	± 0.30	± 0.50	± 0.35	$\pm \ 0.0$	± 0.50	± 0.35
SK Ring Counting	$f^{N_{ring}}$	\pm 3.90	\pm 8.40	\pm 5.03	$\pm \ 0.0$	\pm 8.40	\pm 5.03
SK PID Muon	$f^{PID\mu}$	$\pm \ 0.0$	$\pm \ 1.00$	± 0.25	$\pm \ 0.0$	± 1.00	± 0.25
SK PID Electron	f^{PIDe}	\pm 3.80	\pm 8.10	\pm 4.88	$\pm \ 0.0$	\pm 8.10	\pm 4.88
SK POLfit Mass	f^{POLfit}	\pm 5.10	\pm 8.70	\pm 6.01	$\pm \ 0.0$	\pm 7.70	\pm 6.01
SK Decay Electron	$f^{N_{dcy}}$	$\pm \ 0.10$	± 0.30	± 0.15	$\pm \ 0.0$	$\pm \ 0.30$	± 0.15
SK π^0 Efficiency	$f^{\pi^0 eff}$	± 0.00	\pm 5.90	± 1.49	$\pm \ 0.0$	$\pm~5.90$	± 1.49
CC QE shape	$f^{CCQEshape}$	\pm 4.91	\pm 2.62	\pm 4.33	$\pm \ 0.0$	$\pm~2.72$	\pm 4.33
$CC \ 1\pi$	$f^{CC1\pi}$	\pm 4.28	\pm 3.76	\pm 4.15	\pm 5.93	$\pm~2.10$	± 1.78
CC Coherent π	f^{CCcoh}	± 0.32	± 0.23	± 0.30	\pm 3.29	\pm 3.06	$\pm~2.99$
CC Other	$f^{CCother}$	$\pm \ 0.07$	± 0.35	± 0.14	\pm 4.77	\pm 4.43	\pm 4.63
NC $1\pi^0$	$f^{NC1\pi^0}$	± 0.00	\pm 5.86	± 1.48	± 0.05	\pm 5.56	± 1.43
NC Coherent π	f^{NCcoh}	± 0.00	± 2.48	± 0.63	± 0.00	$\pm \ 2.37$	$\pm \ 0.62$
NC Other	$f^{NCother}$	± 0.00	\pm 3.83	$\pm \ 0.97$	± 1.14	$\pm~2.53$	$\pm \ 0.17$
$\sigma(\nu_e)$	$f^{\sigma(u_e)}$	\pm 6.00	\pm 3.17	\pm 5.29	± 0.01	$\pm \ 3.28$	\pm 5.28
FSI	f^{FSI}	\pm 3.83	$\pm \ 10.34$	\pm 5.47	± 0.00	$\pm \ 10.32$	\pm 5.47
Beam Norm.	$f^{\phi}_{SK/ND}$	$\pm \ 21.97$	$\pm \ 18.12$	$\pm \ 20.49$	\pm 19.83	$\pm \ 9.17$	± 11.88
ND Efficiency	$f^{\epsilon_{ND}}$	± 0.00	± 0.00	± 0.00	$^{+5.60}_{-5.16}$	$+5.60 \\ -5.16$	$+5.60 \\ -5.16$
Overall Norm.	f^{norm}	$\pm \ 0.00$	$\pm \ 0.00$	$\pm \ 0.00$	± 0.00	± 2.70	± 2.70
Total		\pm 25.17	\pm 27.77	\pm 24.64	$+22.23 \\ -22.13$	$^{+23.95}_{-23.85}$	$^{+19.55}_{-19.43}$

SK v_µ Systematic Uncertainties

Systematic uncertainties by source for the v_{μ} analysis

Source of error	% error in N_SK (GENIE)	% error in N_SK (NEUT)
SuperK CCQE efficiency	± 6.4	± 6.4
SuperK CCnonQE efficiency	± 3.9	± 4.3
SuperK NC efficiency	± 2.6	± 2.1
SuperK nue CC efficiency	± 0.0	± 0.0
ND280 efficiency	+5.3 -4.8	+5.3 -4.8
Flux normalisation	± 9.6	± 9.7
CCQE cross section	± 4.3	± 4.1
CC1π/CCQE cross section ratio	+2.7 -2.4	+2.2 -2.0
CC other/CCQE cross section ratio	+5.9 -5.2	+5.4 -4.8
NC/CCQE cross section ratio	± 0.7	± 0.8
FSI	± 3.3	± 3.3
Total	+16.0 -15.5	+15.7 -15.3

T2K v_µ Spectrum

Spectrum of the 8 v_{μ} candidate events compared to the expected oscillated and unoscillated spectra

Ring PID at SK

Ring with sharp edges

"Fuzzy" ring due to scattering, EM showering

Two e-like rings from photons