

Francesco Santanastasio

on behalf of the CMS Collaboration

Recontres de Moriond "EW Interactions and Unified Theories" March 13th–20th, 2011, LaThuile, Italy

- Look for exotic signatures of New Physics
 - New Heavy Resonances
 - Quark and Lepton Compositeness
 - Extra Dimensions
 - Other Exotic Signatures
- >20 searches with 2010 pp data at $\sqrt{s} = 7$ TeV (LHC)
- Full dataset used in most analyses (~35 pb⁻¹)
- Many results published or submitted/accepted for publication
- More focus on the <u>new results</u>

All made possible thanks to...

LHC

- First pp collision at 7 TeV on 30 March, 2010
- Almost 50 pb⁻¹ of pp collisions delivered at sqrt(s)=7 TeV to both ATLAS and CMS experiments

CMS Detector

Di-Lepton Resonances

Di-Lepton Resonances

Events 10⁵

10³

10²

10

CMS

L dt = 36.1 pb⁻¹

 $\sqrt{s} = 7 \text{ TeV}$

eν

W' Searches

W→ev

Multi-jet

Data

Other Bkgs

W' (M=0.9 TeV/c2)

W' (M=1.1 TeV/c2)

W' (M=1.3 TeV/c2)

• Bump hunt in M_T(lv) spectrum

$$M_T = \sqrt{2E_T^{\ell} E_T^{miss} [1 - \cos \Delta \phi(\ell, E_T^{miss})]}$$

• No significant deviation from SM, set limits

CMS limits (36 pb⁻¹)

eν	1.36 TeV
μν	1.4 TeV
εν+μν	1.58 TeV

Published CDF/D0 limits CDF, ev, 5.3 fb⁻¹: M(W`) > 1.12 TeV **D0, ev, 1 fb⁻¹:** M(W`) > 1 TeV

Scalar Leptoquarks (1)

iet

$S_T = p_T^{\ell_1} + p_T^{\ell_2} + p_T^{j_1} + p_T^{j_2}$

- LQs decay to lepton and quark
 - $\beta = BR(LQ \rightarrow lq)$
 - $1-\beta=BR(LQ \rightarrow \nu q)$
- Search for 1st (e) and 2nd (μ) generation LQs
- No excess at high S_T

lepton +/-

Scalar Leptoquark (2)

eejj : arXiv:1012.4031, accepted by PRL evjj + comb. : EXO-10-006

μμjj : arXiv:1012.4033, accepted by PRL μvjj + comb. : coming soon...

Exceed Tevatron limits for almost the entire β range

b' \rightarrow tW and ttbar Resonances

- Pair produced b'→tW→WWb
- Like-sign dilepton and trilepton (e,µ) decays + jets (BR=7.3%)
- $N_{background} = 0.3 + 0.2$ events (tt+jets)
- 0 events observed

- Bump hunt in M(ttbar) spectrum
- Lepton+jets channels (e and µ)
- No bump seen in data
- Set limits, competitive with Tevatron

Quark Compositeness $(q^* \rightarrow qZ)$

- Complementary to $q^* \rightarrow jj$ decay channel
- Search for bump/deviations in Z p_T spectrum •
- No deviation from SM prediction, set limits •

$$M_{q^*} = \Lambda, \ f = f' = f_S = 1$$

 $M_{q^*} > 0.91 \text{ TeV}$

 $M_{q^*} = \Lambda, \ f = f' = 1(f_s = 0)$ $M_{a^*} > 1.17 \text{ TeV}$

(H1 limit, 475 pb⁻¹, gauge int.,
$$f_S=0$$
, $M_{q*}>252$ GeV

Lepton compositeness

First Public Presentation of these Results

Production via new contact interaction

- Search for excess in data at high M(eγ) or M(μγ)
- Reducible backgrounds from data
 - Fake γ : Z+jets (l⁺l⁻ + fake γ)
 - Fake 1 : W γ +jets (1 + fake 1 + γ)
- 0 events observed at high $M(l\gamma)$
- Set limits, exceed Tevatron

Large Extra Dimensions (γγ and μμ)

- Theory Parameters: $M_s = UV$ cutoff in σ n = number of ED
- Look for excess at high mass in yy or µµ spectrum
- No event observed with $M_{\gamma\gamma}(M_{\mu\mu}) > 500 (600) \text{ GeV}$
- Set lower limits on M_{S} (TeV) vs n

		GRW	He	wett				H	LZ			_
111			Pos.	Neg.	n _{ED}	= 2 n	ED = 3	$n_{\rm ED}=4$	$n_{\rm ED} = 5$	$n_{\rm ED}=6$	$n_{\rm ED}=7$	1
X X	Full	1.94	1.74	1.71	1.8	39	2.31	1.94	1.76	1.63	1.55	
	Trunc.	1.84	1.60	1.50	1.8	30	2.23	1.84	1.63	1.46	1.31	
			Λ_T [Te	eV] (GI	RW)			M _s [Te	V/c^2] (HL	Z)		
						n=2	n =	3 $n = 4$	1 n = 5	n = 6	n = 7	
μμ	Ful	1		1.80		1.75	2.15	5 1.80	1.63	1.52	1.43	
• •	Trunca	ated		1.68		1.67	2.09	9 1.68	1.49	1.34	1.24	

Extend Tevatron limits in all but the n_{ED} =2 case

Large Extra Dimensions (mono-jet + MET)

- One high p_T jet + large MET + no leptons
- Suppress cosmic/beam halo/instrumental backgrounds
- Data-driven estimate for $Z \rightarrow vv + jets$ background
- Data consistent with SM, set limits on $M_D vs \delta$

N _{DATA}	275
N _{BKG} (data-driven)	297 +/- 45
$N_{SIGNAL}(M_D=2,\delta=2)$	115.2

 M_D = "True" Planck scale δ = number of extra dimensions

5	1.50 10 V	1.05 10 V
4	1.77 TeV	1.67 TeV
[*] = 1 <i>F</i>	$5(14)$ for $\delta = 2.3(4)$	

δ	CDF	LEP
2	1.4 TeV	1.6 TeV
3	1.15 TeV	1.2 TeV
4	1.04 TeV	0.94 TeV

Searches for Black Holes

- Smoking gun signature of TeV scale gravity
- Democratic BH decay via Hawking radiation to all SM degrees of freedom (mostly quarks and gluons)
- Search for deviation in S_T distribution in bins of "object multiplicity" (N)

 $S_T = \sum_{N} E_T$ for jets,e, γ,μ with E_T>50 GeV + MET

- Use S_T spectrum from N=2 to predict N>=3,4,5, where signal would be present
- No excess observed, set limits (semi -classical approximation)

Ла Уво Ло⁴

Events / 100 (

10

Lepton jets (Hidden Valley)

- Hidden sector contains a new low mass particle (m₁ ~ few GeV)
- It decays into SM pairs (i.e. μμ)
- Collimated groups of di-muons [μμ]
 - opposite charge, $m_{\mu\mu}$ <9 GeV, consistent vertex
- Search for new μμ resonances in various event topologies: [μμ], [μμ][μμ], etc.

- These are the backgrounds
- M(μμ) background shape from control sample of data at low P_T
- Then look at high $P_T \dots$

Lepton jets (Hidden Valley)

- No new µµ resonance seen
- Set model independent upper limits on σ x BR x α (~0.1–0.5 pb)
- Verified sensitivity in various benchmark models (ex. NMSSM Higgs, MSSM + γ_{DARK})

Massive Long-lived Particles (1)

- Benchmark model: "split SUSY"
- Gluinos hadronize forming R-Hadrons
 - bound state of SUSY particle + quarks/gluons

1) Massive charged particles with large dE/dX in silicon tracker

Since massive they have **low velocity**

 $\beta \gamma = \frac{p}{m}$

2) Stopped particles stopped in the detector due to energy loss, decaying out-of-time w.r.t. to collisions

Massive Long-lived Particles (2)

- Benchmark model: "split SUSY"
- Gluinos hadronize forming R-Hadrons
 - bound state of SUSY particle + quarks/gluons

1) Massive charged particles with large dE/dX in silicon tracker

Since massive they have **low velocity**

 $\beta \gamma = \frac{p}{p}$

m

2) Stopped particles stopped in the detector due to energy loss, decaying out-of-time w.r.t. to collisions

Summary

- >20 searches for various new physics phenomena
- No significant excess found in data
- In many cases, we exceed the limits previously set by Tevatron experiments
- Good understanding of the detector and backgrounds in a variety of channels
 - data-driven background estimation in most cases
- Fundamental component of successful searches with much larger dataset expected in 2011 and beyond...

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Looking forward to see more of these events...

BACKUP SLIDES

Searches with 2010 data (1)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

✤ New heavy resonances (Z', W', Leptoquarks, q*, etc.)

1) Search for Dijet Resonances in 7 TeV pp Collisions at CMS	PRL 105:211801,2010 arXiv:1010.0203	Mass limits on various new particles (ex. excited quarks M _s >2.5 TeV, M _{q*} >1.58 TeV)	2.9/pb
2) Search for for a heavy gauge boson W' in the final state with an electron and large missing transverse energy in pp collisions at sqrt(s) = 7 TeV	Accepted by PLB arXiv:1012.5945	Limit on M(W')>1.36 TeV, assuming SM-like coupling and BRs	36/pb
3) Search for a W' boson decaying to a muon and a neutrino in pp collisions at sqrt(s) = 7 TeV	Submitted to PLB arXiv:1103.0030	ev+μv combined limit on M(W')>1.58 TeV, assuming SM-like coupling and BRs	36/pb
4) Search for Resonances in the Dilepton Mass Distribution in pp Collisions at sqrt(s) = 7 TeV	Submitted to JHEP arXiv:1103.0981	ee+μμ combined limit on M(Z')>1.14 TeV, (SM- like coupling) + others models	36-40/ pb
5) Search for Pair Production of First-Generation Scalar Leptoquarks in pp Collisions at sqrt(s) = 7 TeV	Submitted to PRL arXiv:1012.4031	Limit on scalar leptoquark mass > 384 GeV for BR(LQ \rightarrow eq)=100 %	33/pb
6) Search for Pair Production of Second-Generation Scalar Leptoquarks in pp Collisions at sqrt(s) = 7 TeV	Submitted to PRL arXiv:1012.4033	Limit on scalar leptoquark mass > 394 GeV for BR(LQ \rightarrow µq)=100 %	34/pb
7) Search for First Generation Scalar Leptoquarks in the channel pp \rightarrow e+jets +MET at sqrt(s)=7 TeV	Preliminary result EXO-10-006	eejj+evjj combined limit on scalar LQ mass > 255,340,384 GeV, for BR(LQ→eq)=10,50,100%	36/pb
8) Search for a Heavy Bottom-like Quark in pp Collisions at sqrt(s) = 7 TeV	Submitted to PLB arXiv:1102.4746	Limit on mass of b' > 361 GeV	34/pb
9) Search for Resonances in Semi-leptonic Top-pair Decays Close to Production Threshold	Preliminary result TOP-10-007,EXO-10-023	Limit on σ(Z') X BR(Z'→tt) ~< 30 (3) pb for M(Z') ~ 500 (1500) GeV	36/pb

Compositeness and contact interactions

10) Search for Excited Leptons in pp Collisions at sqrt(s)=7 TeV	Preliminary result EXO-10-016	Limit on mass of excited muons (electrons) > 745 (720) GeV for contact int. scale Λ =2 TeV	36/pb
11) Search for New Physics in Highly Boosted Z0 Decays to Dimuons in pp	Preliminary result	Limit on mass of $q^* > 911$ (1116) GeV for gauge	36/pb
Collisions at sqrt(s)=7 TeV	EXO-10-025	(contact int.) prod. with $M_{q^*}=L$ and $f=f'=f_s=1$	

Searches with 2010 data (2)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Compositeness and contact interactions

12) Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at sqrt(s) = 7 TeV	PRL 105:262001,2010 arXiv:1010.4439	Limit on energy scale of quark contact interactions Λ >4 TeV	2.9/pb
13) Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at sqrt(s) = 7 TeV	Submitted to PRL arXiv:1102.2020	Limit on contact interaction scale for left-handed quarks $\Lambda{>}5.6~\text{TeV}$	36/pb

Extra dimensions

14) Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider	Preliminary result EXO-10-026	Lower limits on fundamental scale M _D depending on num. of extra dim.	34/pb
15) Search for Large Extra Dimension in Dimuon Events in pp Collisions at sqrt(s)=7 TeV	Preliminary result EXO-10-020	Lower limits on fundamental scale M _D depending on num. of extra dim.	40/pb
16) Search for Large Extra Dimensions with a Mono-jet and Missing Transverse Energy in pp collisions at sqrt(s)=7 TeV	Preliminary result EXO-11-003	Lower limits on fundamental scale M _D depending on num. of extra dim.	36/pb
17) Search for Randall-Sundrum Gravitons Decaying into Two Photons in 7 TeV pp Collisions with the CMS Detector	Preliminary result EXO-10-019	Limit on graviton mass > 371-945 GeV for coupling parameter from 0.01 to 0.1	36/pb
18) Search for Microscopic Black Hole Signatures at the Large Hadron Collider	PLB697:434-453,2011 arXiv:1012.3375	Limits on the min. M_{BH} >3.5-4.5 TeV for various parameters M_{D} and n in ADD model	35/pb

Other exotic signatures (long-lived particles, lepton-jets)

19) Search for Heavy Stable Charged Particles in pp collisions at sqrt(s) = 7 TeV	Submitted to JHEP arXiv:1101.1645	Limit on mass of stable gluino > 398 GeV using convention model of nucl. int. for R-Hadrons	3.1/pb
20) Search for Stopped Gluinos in pp Collisions at sqrt(s) = 7 TeV	PRL 106:011801,2011 arXiv:1011.5861	Limit on mass of gluino > 370 GeV with 10 μs < τ < 1000s	10/pb
21) Search for Resonant Production of Lepton Jets	Preliminary result EXO-11-013	Upper limit on σ x BR x a_{gen} in the range 0.1-0.5 pb for various event topologies	35/pb

Search for dijet resonances (2.9/pb)

• Strong s-channel production of colored objects has huge advantage at the LHC w.r.t. Tevatron, particularly for gg-fusion

• Parametrize dijet mass spectrum with smooth 4-parameter fit function:

$$rac{d\sigma}{dm} = rac{P_0(1-m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2+P_3\ln(m/\sqrt{s})}}$$

- Look for bumps
- None observed in 2.9/pb, set limits

10⁻¹

Tracks / 50 GeV/c² 01 02

10

1000

Heavy Stable Charged Particles

27

Select tracks or muons with high pT and dE/dX

- Reconstruct mass with approx. "Bethe-Bloch formula"
- Data-driven background estimation exploit absence of ٠ correlation between pT and dE/dX
- Final selection optimized by requiring total expected ٠ background ~0.05
- 0 events observed, set limits ٠

submitted to JHEP

Limits on SUSY gluino and stop masses for various fractions of neutral $\widetilde{q}q$ states in "R-Hadronization"

In "charge suppr. scenario" **R-Hadrons** become neutral before reaching muon system \rightarrow Trk-only analysis still sensitive

M_{gluino}>311-398 GeV

Search for Stopped Gluinos (10/pb, 63 hours, peak L_{int}=10³²cm⁻²s⁻¹)

• Look for subsequent decay during times where there is no beam (in between LHC bunches) using dedicated jet trigger

 ${\rm BR}(\tilde{g}
ightarrow g \tilde{\chi}_1^0) = 100\%~~{\rm (Single-jet-like signature)}$

- Cosmic/instrumental background derived from data control sample at low L_{int}
- Both counting experiment and time-profile analysis consistent with background only hypothesis, set limits

Counting experiment for $10^{-7} < \tau_{aluino} < 10^6$ s

	giuino	
Lifetime [s]	Expected Background (\pm stat \pm syst)	Observed
1×10^{-7}	$0.8\pm0.2\pm0.2$	2
1×10^{-6}	$1.9 \pm 0.4 \pm 0.5$	3
1×10^{-5}	$4.9 \pm 1.0 \pm 1.3$	5
1×10^{6}	$4.9 \pm 1.0 \pm 1.3$	5

Large Extra Dimensions (ADD model) PLB 429 (1998) 263

- Hierarchy problem: $M_{Pl} \sim 10^{19} \text{ GeV}$, $M_{EW} \sim 10^2 \text{ GeV}$
- The ADD model solves it
 - "n" extra dimensions in space of size "r"
 - Gravity only propagates through multi-D space
- True Planck scale (M_D) lowered to TeV scale
 - \rightarrow graviton production possible at LHC
- We have searched for LED in:
 - 1) Di-photon (γγ)
 - 2) Di-muon ($\mu\mu$)
 - 3) Mono-jet + MET
 - 4) Microscopic Black Holes

 $M_D^{n+2} \propto M_{Pl}^2 / r^n$

Standard Model lives in 3+1 D space-time

di-µ jet

(a) they are

oppositesign, (b) their

invariant

mass < 9

vertex

GeV/c², and

(c) they have

a consistent

Lepton jets (2)

EXO-11-013

 Model of SUSY dark matter with a ~1 GeV/c² dark photon, inspired by the PAMELA interstellar positron excess (PRL 103 (2009) 051801) Another dark SUSY model with a ~1 GeV/c² dark photon, always produced in pairs from dark higgs to 2 dark photons (to four muons). (JHEP 04 (2009) 014)

RS Graviton $\rightarrow \gamma \gamma$

b'**→**tW

- Pair produced b': $tWtW \rightarrow bWWbWW$
 - same-sign di-lepton, tri-lepton decays (BR~7.3%)
 - lepton (e/μ) PT>20 GeV
 - at least 2 (4) jets PT>25GeV for tri-lepton (same sign di-lepton)
 - Z veto: $| M(ll) M(Z) | \le 10 \text{ GeV}$
 - ST = Sum PT(jets)+PT(leptons)+MET >350 GeV

- Data-driven background estimate
 - same-sign di-lepton: from fake rate + charge mis-ID
- Expectd bkg = 0.3 + 0.2
- 0 events observed arXiv:1102.4746, Submitted to PLB

Intervals and Limits for a Physically Bounded $\boldsymbol{\mu}$

- Prototype: measurement x is unbiased Gaussian estimate of μ. (Let σ=1.) What is 95% C.L. Upper Limit (UL)?
- 1986: Six methods for UL surveyed by V. Highland (VH) include U.L. = max(0, x + 1.64) and U.L. = max(0,x) + 1.64.
- RPP 1986: Bayesian: uniform prior on the mean μ for μ≥0, prior prob = 0 for μ<0. (VH's other five not mentioned.)
- 1994,96: 3 ad-hoc frequentist recipes, one using max(x,0).
- 1998: Feldman & Cousins (FC) "Unified Approach" in (Kendall and Stuart) replaces ad hoc frequentist
- 2002: CL_s from LEP added to Bayesian and FC.
- CMS Statistics Committee recommends using (at least) one of the three (red) methods in 2002-present PDG RPP.
- ATLAS SC method implies U.L. = max(0, x + 1.64) before power constraint (PC), U.L. = max(-1,x) + 1.64 after PC.

Comparison of ATLAS PCL with the three methods in PDG

ATLAS PCL re-opens discussion on use of diagonal line along with ad hoc constraint, out of favor for many years, not recommended by CMS SC.

CMS and ATLAS SC's are reviewing arguments and what has been learned in 25+ years. Academic statisticians have commented as well.

Just tip of iceberg: Poisson example brings in other issues. Nuisance parameters yet more. Choice of test statistic varies.