Higgs $_{SM} \rightarrow \tau \tau^{+} jet jet$ at DØ

Young Scientist Forum, Rencontres de Moriond–EW March 15, 2011

Katy Tschann-Grimm State University of New York, Stony Brook

Multivariate Analysis

Distinguishing between signal and background: Multivariate Analysis: Boosted Decision Trees

Result of training High Mass VBF_{ww} signal against Zjets background

Signals are pushed to + side
 Zjets is pushed to – side
 But other backgrounds are also at +1

BDT outputs are used as input to a Combined BDT

Better Signal-Background discrimination!

Limit Setting

m _H	Expected Limit	Observed Limit
115	12.8	32.8
135	12.9	13.0
165	12.3	12.4

Towards further sensitivity:

 \rightarrow 40% more data to be added in this channel \rightarrow New discriminating variables and improved multivariate analysis

Tevatron Combination

MuTauJetJet

eTauJetJet

monte carlo

- MC Higgs signal: pythia using CTEQ6L1 leading-order parton distribution functions (PDF). The signal cross sections are normalized to the next-to-next-to-leading order (NNLO) (or NLO for VBF).
- The SM backgrounds from tt and V +jets production are generated using alpgen with parton showering and hadronization provided by pythia. Production of electroweak VV pairs is generated with pythia. The SM backgrounds tt and V +light jets only are normalized to NLO cross sections from the mcfm program and data. The NLO cross sections for dibosons are taken from mcfm.
- Higgs and τ decays are simulated by hdecay and tauola respectively.

QCD Background Est.

Normalized using the ratio of OS/SS events in the MJ enriched sample

 τ lepton properties & reconstruction

The τ lepton and its reconstruction

We will focus on hadronic decay of $\tau : \tau_{had}$

Reconstruction and DØ τ type definition for <u>hadronic</u> decay :

- DØ type $1 \equiv 1$ trk, HAD deposit $\sim \tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$
- DØ type $2 \equiv 1$ trk, EM and HAD deposit ~ $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{0} \pi^{\pm}) \nu_{\tau}$
- DØ type 3 = at least 2 trks, HAD deposit ~ $\tau^{\pm} \rightarrow a_1^{\pm} (\rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm}) \nu_{\tau}$

Romain Madar (CEA/Irfu/SPP)

BDT inputs

variable	definition
$p_T{}^\ell$	p_T of the lepton candidate
$p_T{}^{j1}$	p_T of the leading jet candidate
E_T	missing transverse energy
$M_{\tau\tau}$	invariant mass of the $(\tau_{\ell}, \tau_{had})$ system
$M_{ m jj}$	invariant mass of the two candidate jets
$\Delta R_{ m jj}$	$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ distance between the 2 leading jets
$M_{ m T}^\ell$	transverse mass calculated from $p_T{}^\ell$ and $\not\!\!\!E_T$
$M_{ m T}^{ au}$	transverse mass calculated from $p_T{}^{\tau}$ and $\not\!$
H_T	scalar sum of the p_T of all jets with $p_T > 15$ GeV and $ \eta < 2.5$
S_T	scalar sum of the p_T of ℓ, τ , the two jets and $\not\!\!E_T$
V_T	magnitude of the vector sum of the p_T of ℓ, τ , the 2 jets and $\not\!\!E_T$
$A(\not\!\!E_T,\not\!\!\!H_T)$	asymmetry between $\not\!$
$\min \Delta \phi(E_T, jets)$	the smaller $\Delta \phi$ between the E_T and any jet
S	the $\not\!$
$ \Delta \eta(jj) $	$ \Delta \eta $ between the 2 leading jets
$p_T^{ au}$	transverse momentum of the tau candidate that decays $\tau \rightarrow$ hadrons

TABLE IV: Variables used for the BDT training.

Preselection for tau tau jet jet

Systematic uncertainties

Source	type	Uncertainty (%)	Source	type	Uncertainty (%)
Luminosity (DØ specific)	flat	4.1	Luminosity (DØ specific)	flat	4.1
Luminosity (Tevatron common)	flat	4.6	Luminosity (Tevatron common)	flat	4.6
μ ID, track match, iso.	flat	2.9	<i>e</i> ID, track match, iso.	flat	4
$\mu ext{ trigger}$	flat	8.6	$e { m trigger}$	flat	2
τ energy correction	flat	9.8	τ energy correction	flat	9.8
τ track efficiency	flat	1.4	τ track efficiency	flat	1.4
au selection by type	flat	12, 4.2, 7	τ selection by type	flat	12, 4.2, 7
W/Z+light flavor XS	flat	6.0	W/Z+light flavor XS	flat	6.0
$t\overline{t}$, single top XS	flat	10.0	$t\overline{t}$, single top XS	flat	10.0
diboson XS	flat	7.0	diboson XS	flat	7.0
VH signal XS	flat	6.2	VH signal XS	flat	6.2
VBF signal XS	flat	4.9	VBF signal XS	flat	4.9
GGF signal XS normalization	flat	33	GGF signal XS normalization	flat	33
GGF signal XS PDF	flat	29	GGF signal XS PDF	flat	29
GGF p_T^H	shape	1.0	GGF p_T^H	shape	1.0
jet vetex confirmation	flat	4.0	jet vetex confirmation	flat	4.0
Jet ID/reco eff.	shape	≈ 20	Jet ID/reco eff.	shape	≈ 20
Jet E resolution.	shape	≈ 10	Jet E resolution.	shape	pprox 10
JES	shape	≈ 15	JES	shape	pprox 15
jet p_T	flat	5.5	jet p_T	flat	5.5
PDF	shape	2 - 6	PDF	shape	2 - 6
MJ normalization	flat	5.3	MJ normalization	flat	4.7
MJ shape	shape	15 -20	MJ shape	shape	15 - 20

μτϳϳ