

Double Chooz

Searching for θ_{13} with reactor neutrinos

XLVITH Rencontres de Moriond Electroweak Interactions and Unified Theories March 2011, La Thuile

Pau Novella Garijo (CIEMAT) For the Double Chooz Collaboration

Moriond 2011, La Thuile

Overview

Reactors neutrinos towards θ₁₃

- The Double Chooz experiment
- The new-born detector
- Taking the most from Double Chooz

Measuring the oscillation

Exploring the neutrino mixing

What's next?

Why reactor neutrinos?

In contrast to accelerator experiments....

$$P_{ee}(E_{\overline{\nu}_e}, L, \Delta m_{31}^2, \theta_{13}) = 1 - \sin^2(2\theta_{13}) \sin^2\left(1.27 \frac{\Delta m_{31}^2 [10^{-3} \text{ eV}^2] L[\text{km}]}{E_{\overline{\nu}_e}[\text{MeV}]}\right)$$

- No parameter correlations
- Nearly pure \overline{v}_{e} beam
- Low energy

- No matter effects
- Cheap, as source exists
- High flux and large xsection

The Double Chooz Experiment

P. Novella, Moriond 2011

The Double Chooz Collaboration

Setting up the experiment

P. Novella, Moriond 2011

Expected oscillation signal

Backgrounds

- Uncorrelated:
 - Radioactivity + fast neutrons
- Correlated:
 - Fast neutrons: p recoil + n capture
 - cosmogenic isotopes: n-β decay

Double Chooz Detectors

Double Chooz Detectors

Calibration Systems

Laser and LED system

The New Born Detector

P. Novella, Moriond 2011

Far Detector Hall

The Inner Veto

The Inner Detector

The Inner Detector (II)

Closing The Detector

Feeding The Detector

The Filling Station

The Shield

The Detector Brain

Seeing the light

First PEs @ Chooz

Summer 2010: first PEs detected in a empty detector

Scintillator Time Response

• 2010: reconstructed scintillator time response in partially filled detector

Electronics noise

• 2010: stability of the electronics

• 4 µs Baseline in Channel 0

Electronics noise very low and stable

Baseline mean in Channel 0

Inner Detector Events

• 2011: first events with a filled detector 210 count 200 PDC **ID** Contained **ID** Waveforms **Event** DC Preliminary C Prelimina **Few PEs** Time [ns]

P. Novella, Moriond 2011

Detecting the muons

Muons in the Inner Detector

P. Novella, Moriond 2011

Muon Rate @ Inner Veto

First estimation of muon rate: 38.8 trigger / second

Taking the most from DC

Improving CHOOZ

CHOOZ Detector

• $\sin^2(2\theta_{13}) < 0.15$ ($\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$)

• Statistical error:

	CHOOZ	Double Chooz
Target Volume	5.55 m3	10.3m3
Data Taking	Few months	3-5 years
Statistical Error	2.8%	0.5%

• Systematics:

	CHOOZ	Double Chooz
Reactor Flux	2%	
Number of protons	0.8%	0.2
Systematic Error	2.7%	0.6%

Two Phases

Source	Systematic	DC Phase I	DC Phase II	
Reactor	Production σ	1.9%		
	Core powers	2.0%		
	Energy per fission	0.6%		
	Solid angle		0.1%	
Detector	Number of protons	0.5%	0.2%	
	Gd concentration	0.3%		
	Detection σ	0.1%		
Analysis	Event selection	0.4%	0.4%	
	Total	< 2.8%	< 0.6%	

Phase I: Far Detector only
2011 (Now!!!)
Sensitivity limited by

the uncertainties

in reactor neutrino fluxes

Phase II: Far and Near Detectors

2012

Sensitivity limited by Detector relative normalization and energy scale

Double Chooz Sensitivity

Summary

- Double Chooz will search for $\sin^2(2\theta_{13})$ down to 0.03
 - The quest has just begun!

The far detector was built and filled by December 2010

- Commissioning period: January 2011 March 2011
- Detector yields good and stable performance
- Far Detector is almost ready to take *physics* data
- Results improving CHOOZ limit to θ_{13} quite soon!

Thank you!

Photo: Lola Garrido

Reactors as v source

v come from fission products...*

• v Flux depends on fuel composition:

v Flux known to only 2%

• High flux: $1 \text{GW}_{\text{th}} \sim 2 \times 10^{20}$ \overline{v}_{e} / s

P. Novella, Moriond 2011

What we know about θ_{13}

Comparing the experiments

Calibration

Calibration Strategy:

- Redundancy of several calibration systems
- Cross-check and accurate understanding of the systematics
- Calibration Goals:
 - PMT+Electronics Gain and Timing
 - Embedded LED system and deployed isotropic aser
 - Liquid Scintillator optics and stability
 - Detector stability
 - Embedded LED system and deployed isotropic laser
 - Energy scale
 - Radioactive sources (137Cs, 22Na,60Co,...)
 - n-capture on H
 - Gd n-capture efficiency
 - Neutron sources (252Cf Am-Be, tagged/un-tagged)
 - 3D response
 - Deployment of sources along Z-axis (fish-line)
 - Calibration arm off Z-axis
 - Deployment of sources in GC and Buffer guide lines