Updates on flux simulation and sensitivities

EURONU

A. Longhin IRFU-CEA

Saclay

1

EUROnu WP2 meeting Kraków, 14 October 2010

A. Longhin

EUROnu WP2 meeting

Kraków 14 Oct 2010

Activity since last meeting

- EUROnu note on focusing optimization with Christoph submitted.
 - comparison between our optimizations based on "conical" / "forward-closed" horns

 Reorganization/finalization of the work done in view of the document for the "milestone" on the neutrino beamline

focus on the "forward-close" model

Conical – forward closed

Best conical horns are not far. Forward closed horns do better.

A. Longhin

Kraków 14 Oct 2010

Conical – forward closed

I focused in the following on this design i.e.

- Forward closed shape
- no reflector
- I = 300 kA
- inner radius = 1.2 cm \sim "integrated target" idea

Interplay of inner radius and current studied systematically (see later)

A. Longhin

Structure for the milestone

Decription of the setup:

proton driver / far detector, target / horn calculation of fluxes and sensitivities

Optimization procedure based on θ_{13} **sensitivity**

Results with an optimized setup fluxes, sensitivities

Hadroproduction uncertainties impact on sensitivities

Conclusions

Target

graphite (Be, Al, AlBeMet are similar)

similar yields for pions

X 15 less neutrons

Horn

à la MiniBoone ("forward closed")

large acceptance for forward produced particles

This shape is well suited for long targets

Good suppression of wrong charge pion dangerous in "-" focusing mode due to ν_e from $\pi^+ \rightarrow \mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$ and $K^+ \rightarrow \pi^0 e^+ \nu_e$

A. Longhin

EUROnu WP2 meeting

Kraków 14 Oct 2010

EUROnu-WP2 note 09-01

Optimization strategy

- Parametric model of magnetic horns
- Random sampling of parameters
- Ranking of configurations based on achievable θ_{13} limits

Figure of merit: $\lambda \equiv \theta_{13}$ sensitivity limit at 99% C.L. averaged over the δ_{CP} phase

$$\lambda = \frac{10^3}{2\pi} \int_0^{2\pi} \lambda_{99}(\delta_{CP}) \, d\delta_{CP}$$

We want as low as possible λ

 Broad sampling of the (many) parameters to identify the most relevant variables. Then restrict the ranges of variation and iterate.

Relation between λ and ν_{μ} / ν_{μ} fluxes

Vary the normalization of numu and nue freely with two independent multiplicative coefficients (c_e, c_u) in [0.5, 2]

Study the variation of λ Iso-sensitivity levels ~ $c_e = \sqrt{c_u}$

The experiment significance : S/ \sqrt{B} is invariant by scaling of the fluxes with $c_e = \sqrt{c_{\mu}}$ because S $\propto v_{\mu}$ and B $\propto v_e$ (roughly, via cross sections, efficiency, spectral shape etc)

Correlation between λ and a "pseudo-significance" build with the fluxes

EUROnu WP2 meeting

Kraków 14 Oct 2010

Correlation between v_{μ} / v_{e} **under variation of the tunnel only**

Tends to follow a quadratic dependence!

It is not possible to gain much

10

Broad scan

Allow parameters to vary independently

Limit	value
L_{max}	$250~{\rm cm}$
R_{max}	$80~{\rm cm}$
R_{min}	$1.2 \mathrm{~cm}$
Parameter	Interval
L_1	$[50, L_{max}]$ cm
L_2, L_3, L_4	$[1, L_{max}]$ cm
L_5	[1, 15] cm
R, R_1, R_2	$[R_{min}, R_{max}]$
R_0	$[R_{min}, 4] \mathrm{cm}$
z_{tar}	[-30, 0] cm
L_{tun}	[35, 45] m
r_{tun}	[1.8, 2.2] m
Parameter	Value
L_{tar}	0.78 m
r_{tar}	$1.5~\mathrm{cm}$
i	300 kA
s	3 mm
r	$5.08~{ m cm}$

The minimal allowed inner radius corresponds to the "integrated target" solution L_{max} and R_{max}: keep the horns small to allow for the 4-horns in parallel to fit A. Longhin EUROnu WP2 meeting Kraków 14 Oct 2010

"Learning" phase (iteration-1)

In red: configurations with $\lambda < 1.05$

A comparison of the distributions of horn parameters for configurations providing good limits gives hints to narrow down the parameters' space before re-iterating the procedure

Re-iterate and fix (iteration-2)

- Restrict space of parameters
- New iteration
- Best* horn shape frozen

best configuration (i.e. giving the minimum λ)

 $R_1 = 1.2 \text{ cm}$ $R_1 + R_2 \text{ in } [20,22] \text{ cm}$ $L_{tun} [30,40]$ $z_0^{tg} \text{ in } [-15,0] \text{ cm}$

Fig. 5. Shape of the optimal configuration found in iteration-2. $L_1 = 58.9 \text{ cm}, L_2 = 46.8 \text{ cm}, L_3 = 60.3 \text{ cm}, L_4 = 47.5 \text{ cm}, L_5 = 1.08 \text{ cm} r_1 = 10.8 \text{ cm}, R_1 = 1.2, \sum_{i=1}^{3} R_i = 56.2 \text{ cm}, \sum_{i=1}^{2} R_i = 20.3 \text{ cm}, z_0^{\text{tg}} = -6.8 \text{ cm}.$

 $L_{tun} = 32.4 \text{ m r}_{tun} = 2.06 \text{ m}$

EUROnu WP2 meeting

Kraków 14 Oct 2010

A. Longhin

Decay tunnel tuning ("iteration-3")

Quadratic fit $\lambda = 0.94 + 2.1 \cdot 10^{-4} (L^{tun} [m] - 31.8)^2 + 2.4 \cdot 10^{-2} (R^{tun} [m] - 2.9)^2$

Broad minimum [2.9,31.8] ~ optimal [2, 25] reasonable choice ~> assumed as central value

Converging to better limits

- broad parameters' scan
- restricted intervals for effective parameters \rightarrow horn with min λ
- vary tunnel parameters in L [15-35] m r [1.5-4.5] m

Interplay inner-radius and current¹

Keep the best configuration + scan in (current, inner radius) plane

Sensitivity stays approximately constant if, when increasing the conductor's inner radius, the current is increased accordingly (B~i/r)

300 kA – 1.2 cm chosen as baseline

A. Longhin

EUROnu WP2 meeting

Kraków 14 Oct 2010

Results with the optimized setup

17

Focusing power (I)

 v_{μ} enhancement: x 6.5 anti- v_{μ} suppression: x 5.4

Focusing power (II)

z-coordinate of π^{\pm}/K^{\pm} decays in flight in positive focusing mode

Visible differences:

* +/- (focusing)
* lifetime of π and K
* relative π/K yield

Fluxes

4-horn setup: effect on flux

Plot updated for the new configuration

A. Longhin

Comparison with the previous fluxes

Event rates in MEMPHYS $sin^2 2\theta_{13} = 0.01, \delta_{CP} = 0$

The bulk of the background comes from the intrinsic beam electron component NC π^0 relevant for the anti-v run (28%).

A. Longhin

EUROnu WP2 meeting

Kraków 14 Oct 2010

Uncertainties related to hadro-production

Pion phase space

At target exit

P VS θ in bins of E_v weighted average, $w_i = E_{v_i}$

Weights according to the contribution to the neutrino flux

Kraków 14 Oct 2010

Pion phase space

HARP "Small angle" data available for a "thin target" (1.95 cm, 3 cm diameter)

HARP data vs FLUKA-GEANT4

Discovery of $\theta_{13} \neq 0$

l assume 5% sys. Errors

low-energy neutrino interactions are a difficult terrain !

Red curves reproduce the published ones.

Discovery of CPV

l assume 5% sys. Errors

low-energy neutrino interactions are a difficult terrain !

Red curves reproduce the published ones.

CP violation discovery at 3 σ ($\Delta \chi^2$ = 9). 5% sys.

Conclusions

Improved limits (θ_{13} and CP)

liquid mercury, horn+reflector (300+600 kA), 40 m tunnel -> solid (integrated) target, single horn (300 kA), 25 m tunnel, 4 in systems parallel

new studies:

- Interplay of current & inner-radius studied
- Uncertainty in the hadroproduction issue addressed at the level of sensitivities

Milestone (~10 pg), in form of article, being finalized

An idea

Going off-axis ? Looks promising but not a big gain when sensitivities are compared

Components

Kraków 14 Oct 2010

EUROnu WP2 meeting

A. Longhin

Decay tunnel tuning (iteration-3) Scan on tunnel length (L_{tun}) and radius (r_{tun})

A. Longhin