THERMAL STUDY OF AN INTEGRATED AND NON INTEGRATED TARGET, ELECTROMAGNETIC HORN

Benjamin Lepers IPHC Strasbourg

October 13, 2010

Benjamin Lepers () [Meeting - WP2 - EURO](#page-11-0)ν**-Krakow October 13, 2010 1 / 12**

THERMAL MODEL: INTEGRATED AND NON INTEGRATED TARGET

FIGURE: Magnetic horn geometry

integrated target: $r_{i1} = 1.5$ cm, $r_{e1} = 2.1$ cm. non integrated target: $r_{i1} = 1.9$ cm, $r_{e1} = 2.5$ cm

- $P_{beam} =$ 1.3 MW, $\mathcal{T} =$ 80ms; $l_{rms} =$ $l_{0} \times \sqrt{\frac{\tau_{0}}{27}} =$ 7.5 kA.
- \bullet joules losses : inner conductor(1), conical segment (2), top end face (3), outer conductor (4), bottom plate (5) bottom end plate (6) see figure [1](#page-1-0)
- \bullet {55, 30} kW deposited in AI and Be target of length 30 cm.
Benjamin Lepers () Meeting WP2 EURO_{L'}-Krakow october 13, 2010 different cooling scenarios **Benjamin Lepers () [Meeting - WP2 - EURO](#page-0-0)**ν**-Krakow October 13, 2010 2 / 12**

COOLING

- Good approximation for the heat transfer coefficient \bar{h} can be obtained from theoretical/empirical correlations
- h is function of the flow regime, fluid properties, mass flow rate and geometry.
- Water cooling: higher heat transfer rate but a high pressure circuit is necessary, or 2 phases flow (turbulent Water and air, or boiling regime). Used in MINOS, NuMI?, report from 2005, turbulent water flow, $h \sim 15kW/(m^2K)$
- Helium well suited. but high flow rate. used in T2K $(h \sim 1kW/(m^2K))$, difficult to have $h > 5kW/(m^2K)$
- In all cases: the maximum cooling heat transfer must occur in the first 10/20 cm of the target
- options: Cross flow, annular or jets.

ESTIMATION OF H COEFFICIENT

For $P_{beam} = 1.3$ MW, $\sigma = 6$ mm, power deposited inside the target are: {55, 30.2} kW for Al and Be. Assume a uniform energy deposition, heat flux are: $\{0.19, 0.106\}$ kW/cm². For the cross flow case, the energy balance is:

$$
q'' = \frac{Q}{2\pi R^{tg}L} = \bar{h}(T_s - T_\infty)
$$
 (1)

Hence if a maximal surface temperature of $T_{\text{smax}} = 200 \degree C$ is specified, the condition on the h convection coefficient is:

$$
\bar{h} \geq \frac{q''}{\Delta T} \tag{2}
$$

$$
\geq \ \{10.5, 5.9\}kW/(m^2K) \tag{3}
$$

Using the maximum heat flux ${0.22, 0.12}$ kW/cm² calculated with Comsol , the minimum h convection coefficient required to maintain a surface temperature below 200 °C are {12.2, 6.6} kW/(m²K) for Aluminium and Beryllium respectively.

Benjamin Lepers () [Meeting - WP2 - EURO](#page-0-0)ν**-Krakow October 13, 2010 4 / 12**

TABLE: Joules losses in the conductors of the horn. Target is Al and Be

Joule loss mainly in the inner conductor and conical part. $P_{loss}\propto\frac{\rho}{L}$ $\frac{r}{r}$. for a given current frequency (constant skin depth).

The corresponding heat flux between the integrated target conductor and the fluid is :

$$
k\left.\frac{\partial T}{\partial r}\right|_{r=R^{tg}}=\bar{h}\left[T(r=R^{tg},z)-T_{\infty}\right].\tag{4}
$$

with T_{∞} the temperature of the cooling fluid.

The cooling coefficient is assumed to follow a linear variation with the target length as described in equation [5.](#page-5-0)

$$
h(z) = -\frac{h_{\text{max}} - h_{\text{min}}}{I}z + h_{\text{max}} \tag{5}
$$

with the following couples : $(h_{min}, h_{max}) = \{1, 2\}, \{2, 2\}, \{2, 3\},\$ $\{5, 10\}$ kW/(m²K) $h = 1kW/(m^2K)$ on the external wall of the horn.

HEAT FLUX

FIGURE: Heat flux at the target surface $r = 15$ mm for Al, Be, C, AlBeMet (yellow, blue, magenta, pink) and $P^{beam} = \{1, 4\}$ MW

Maximum heat flux for Al and Be are {0.25, 0.17}kW/cm² Heat source are energy deposited from the Beam in the target and joule loss.

Need to include energy deposited from secondary particles in the horn wall (Christoph data).

Benjamin Lepers () [Meeting - WP2 - EURO](#page-0-0)ν**-Krakow October 13, 2010 7 / 12**

FIGURE: Temperature field, with and without beam power for Al. Power density from Joule effect is important for the inner conductor and beginning of the conical section $i_{rms} = 15$ kA. $h = 1$ kWm⁻² K⁻¹

TABLE: Maximal temperature for Al and Be for integrated and non integrated target

INTEGRATED TARGET

FIGURE: Temperature of the AI and Be integrated target/horn for $(h_{min}, h_{max}) = (5, 10)$

NON INTEGRATED TARGET

FIGURE: Temperature of the AI and Be non integrated target/horn for (h_{min}, h_{max}) $=$ (5, 10)

CONCLUSION-NEXT STEPS

- Al not feasible for a target material with these cooling regime
- For the same cooling condition; maximal temperature are slightly lower for the integrated target, (thermal conduction target/conductors)
- Heat transfer coefficient will have to be approximately \bar{h} ∼ 10kW/(m^2 K) or higher to maintain a safe working temperature.
- need to include the heat source deposited in the horn wall from secondary particle to be more realistic.
- choose/freeze the magnetic horn parameters. (Christoph and Andrea optimization)
- choose integrated or non integrated
- • design a cooling circuit