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LBNE vs EUROnNu

LBNE:
» 120Gev (or 60Gev)
* 0.7MW or 2.3MW (of which less than 10kW on target)
* rep rate ~1s
* beam sigma? r/3 seems roughly best for pion yield
* Target diameter 9 to 21 mm (~1m long)
» Materials: Be, Al, AIBeMet

EURONu SPL:
* 4.5GeV
* IMW (of which 50kW on target)
* rep rate 12.5Hz
* beam sigma 4mm
* Target diameter 30mm (around 780mm long)
» Material: graphite
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LBNE targets comparison: physics
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size and material comparison

Beryllium Target, Energy Deposition [Gevw/cc/proton], beam energy=B0GeY, beam sigma=3,5mm, integrated energy deposited = 1,087e-10J/proton
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Energy deposition in beryllium target with 60GeV 3.5mm sigma beam,

Integrated energy deposition=16.9kJ/spill
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Energy deposition in Beryllium target with 60GeV 3.5mm beam sigma with
magnetic field, Integrated energy deposition=22.6kJ/spill
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LBNE targets comparison: engineering

Tabls 3.5.1, bsam heating paramster study results

Beryllium
Beam Beam Beam Deposited Av-;irra:ee d EEP:rLk Max. AT per Mﬂfj;i‘s‘v;:n-
Energ_}' F'u:nw?r Sigm_a Energ}'_ F'o'.':?ar Densgilt‘;' 5|:|i_II Stress
(GeV) (M) {mm}) (kJ/spill) (kW) (Jiccispill) (K) (MPa)
120 0.7 1.5 42 3.2 254 78 100
35 9.2 6.9 T4 22 27
&80 0.7 15 29 38 243 73 &9
A ' 2 e.g. Static stresses are
120 23 15 14.0 105 848 254 334 . .
35 307 731 245 74 88 |||UCh h|gher N AI
60 2 1.5 5.4 11.1 TOT 212 288
35 17.0 223 178 B3 &3
AlBeMET
Beam Beam Beam Deposited & Time d EF'eak Max. AT per Mar::_. Wan-
Energy Power Sigma Energy ver_age nergy spill 155
(Gev) (M) (mm) {kdispill) Power Density (K} Stress
‘ : ! ‘ (kW) (Jlecispill) ‘ (MPa)
120 0.7 1.5 8.2 47 321 93 105
3.5 187 11.8 108 33 30
80 0.7 1.5 3.8 5.0 299 ey 104
35 8.6 11.3 77 23 25
120 23 15 2086 155 1069 326 351
35 B2 5 395 359 110 101
60 2 15 11.00 145 869 265 302
3.5 250 32a 223 58 73
Aluminium
Beam Beam Beam Deposited Av-l»:rg;e d EEZ?S}' Max. AT pe Mﬂr.:i.slv;:n-—‘
Energ_}' p':'we.r Sigm_a Energ}'_ Power Density 5|:|i_II Stress
(GeV) (M) {mm}) (kJ/spill) (kW) (iceispill) (K) (MPa)
120 0.7 1.5 12.2 9.2 537 221 158
35 351 25.4 289 110 71
&80 0.7 15 6.3 8.3 472 180 158
156 16.6 21.8 156 &80 43
120 23 15 40.8 307 1789 736 525
156 1171 88.1 898 365 236
60 2 1.5 18.2 240 1374 B51 459
35 45.2 53.4 451 175 124 |
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Engineering Analysis Procedure

Multi-stage process involving linked FLUKA, ANSYS and AUTODYN simulations

— Can choose whether or not to include inertial effects. This enables one to isolate the consequences
of various stress mechanisms:

* “Quasi-static” thermal stress
[thermal conduction timescales of the order ~seconds]

* Inertial stress due to bulk oscillations (“violin modes”)
[1%t mode period typically of the order ~milliseconds]

» Elastic stress wave propagation
[characteristic time period of the order ~microseconds]

Software:

Inputs:

Model:

Outputs:

AUTODYN MatLab
Heat input Stress history
energy dep

Fast dynamic
(1/2 symmetry)

Fourier analysis

FLUKA ANSYS ANSYS
Thermal Mechanical
Proton beam Element heat Nodal
parameters T -» input T -» temperature
| |
v | v | v
Energy '\l Thermal 'Nl  Structural
Deposition > Transient > Static
T 1/4 symmetr T 1/4 symmetr
(3D) 1 (1/4 sy y) % (1/4 sy y)
1 1
v | v | v
Energy density _: Temperature _: Thermal stress /
distribution T distribution T strain

Stress waves
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Process flow diagram: beam induced heating
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Drilling down on different effects:
Static — dynamic — off-centre beam

Dynamic stresses can be
as much as double the
static ones and then grow
by another 50% if off-
centre beam effects are
included

1.499e+14

1.150e+13

targetsmall700kw ?
Cycle 133266 ¥

Time B.730E-002 ms
Units mm, mg, ms
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Worse case scenario: off-centre beam (not that uncommon?!)
static stresses & resonance

300 K 362 K 0 mm 12.5

Off-centre effects include:

* thermal gradient (with associated residual stresses and deformation)
* Inertial stress waves and stress resonance
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A look at dynamic stresses

th)

“Quasi-steady

Total stresses stresses

i.e. thermal
gradient.

Time scale:
thermal diffusivity
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Dynamic
stresses

i.e. reflection and
resonance of stress

waves within the geom.

Time scale:
sound speed

|Yon Mises stresses (f) [WMPa]|
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Amplitude Spectrum analysis of Von Mises stress
throughout the target rod

21mm diameter rod. Simply supported.
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Target segmentation reduces the stresses

Analysis of dynamic stresses; effect of target segmentation
350 T T T T T
tod diameter = 17mm
spheres diameter = 17mm
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Segmentation of the target minimises the
dynamic components quickly resolving to the
“‘quasi-steady” stress field

Avoiding sharp edges in the target geometry
reduces both stress concentrations and
constructive wave interference
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Stresses as a function of rod/spheres diameter

Design Selection Parameters

— Peak stress with off centre beam & FoM

Design choice
— Diameter & Shape (Rod vs Segments)

160

140

120

100

80

60

40

20

Figure of Merit [pions(+/-)/primary *GeV?2-5]

Figure of Merit as afunction of target diameter
(1 m long cylinders; sigma=r/3)
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3. Segmenting the target (a series of spheres for example) has been identified as a potential option for achieving th@W
desired diameter with reasonable stress levels.

1.
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Peak Von-mises stress as a result of 2sigma off centre beam [MPa]
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Reducing target diameter gives better pion yield but more stress.
2. Beam induced dynamic stress in the form of longitudinal stress waves and from induced vibrations are S|gn|f|cant \
in a beryllium rod ruling it out for 2.3MW operation.

4, FoM is cgrtrtlgn
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10 Progress on Combined target and horn concept

« Electromagnetic — Thermal — Structural modelling

— Including the horn “end bells” allows the axial Lorentz forces transmitted by the inner conductor to be
captured in the simulation

NODAL SOLUTION

Von-Mises Stress arising from the 300 kA current pulse AN

PLOT NO. 1

P Loveridge

Finite Element Mesh
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. . High
ANSYS model of the combined target / inner conductor concept. ;8
Axial Lorentz forces induce a significant tensile stress component in the solid inner conductor. .o .
argets
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Preliminary work on the EURONu-SPL baseline graphite rod

Graphite 1G-43 Graphite 1G-43
Heat Capacity Thermal Conductivity
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Beam Heating Model (ANSYS)

« 78 cm long, 3 cm diameter cylindrical graphite target

*  Yiasymmetry 3D finite element model

+ ‘“Instantaneous” power density used as input heat load
« Convection heat transfer applied at outer surface

Integrated Energy Deposition:

4.1 kJ/pulse

Time averaged Power on
Target:
4.1 kd/pulse x 12.5 Hz = 51 kW

Peak Energy Density in Target:

73 J/cclpulse
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AN
Boundary Condition to T} 065058
. PIOT NO. 1
represent surface cooling:
e.g. 2000W/m3K,
bulk fluid temp 30°C
0.6 73.1
J/cc/pulse J/cc/pulse
o
L601E+12 .167E+14 .328E+14 .489E+14 .650E+14
865E+13 .248E+14 .409E+14 .570E+14 .731E+14

3D MODEL, UNITS: k'q m s C, FILE: EUROnu3D

Beam Heat Load Input to ANSYS Thermal Simulation
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Transient Analysis Results (ANSYS)

Graphite 1G-43, 30mm, L780mm
45GeV, IMW Beam @12.5Hz
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[ransient Results summary

But many more pulses required to reach
steady-state conditions...
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14 Preliminary analysis of dynamic stresses in a EUROnNu

SPL graphite rod

4.5 GeV beam. 4mm sigma. 1MW beam
30mm diameter rod. 11mm off-centre beam

- 31230402
3.059e+12

“on Mises stresses in a graphite rod
2.995e+02 T

2.932e+02

uuuuuu te st

Cycle 296001

Tirne 3.082E+000 ms
Units mm, mg, ms

Won Mises stress [MPa)
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15 Preliminary analysis of dynamic stresses in a EURONu

SPL graphite rod

Spectrum analysis of Von Mises stresses

1 — - Radial resonance
Expansion/ contraction of radius

[von Mises stresses [MPa]|

Y-Displacement (due to bowing) of gauge points along the graphite rod
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Conclusions

« There is more to the target than just the physics e.g:

Structural integrity
Heat removal

Ancillaries such as support structure, cooling channels, etc (this also has an
affects on the pion yield!)

Safety & chemical compatibility
Etc.

* Preliminary analysis indicates that the stresses in the EURONu SPL baseline
graphite rod for 1 bunch train look significant

« At high rep rate (12.5Hz) the effects of subsequent bunch trains may constructively
interfere (quasi-static stresses, attenuation coefficient for stress waves?)

» Cooling will not be trivial: 50kW may not seem much but the surface area available
for heat transfer is rather small!

« Segmentation of the target may help to reduce stresses (see LBNE example)
« Beryllium may be a better candidate material (e.g. Better yield strength)?

\
High

Pow

argets

Science & Technology Facilities Council

@ Rutherford Appleton Laboratory Ottone Caretta, Kracow, October 2010 /



