The initial stages of high energy hadronic or nuclear collisions

LAPTH, Annecy-le-Vieux, November 2010

François Gelis IPhT, CEA/Saclay

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Outline

1 Gluon saturation

Ollisions of two saturated projectiles

3 Correlations in the final state

Emergence of hydrodynamical flow

Collaborators :

K. Dusling, I	R. Venugopalan
---------------	----------------

T. Epelbaum

T. Lappi

A. Dumitru, J. Jalilian – Marian

(BNL) (IPhT) (Jyvaskyla University) (Baruch College)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Gluon saturation Why small-x gluons matter

Gluon evolution Color Glass Condensate

Growth of the gluon distribution at small x

Gluon distribution at small x

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- Note: gluons have been divided by 20
- Gluons dominate at any x ≤ 10^{−1}

Longitudinal momentum fraction in AA collisions

 The partons that are relevant for the process under consideration carry the longitudinal momentum fractions:

$$x_{1,2} = rac{M_{\perp}}{\sqrt{s}} e^{\pm Y}$$

- *M*_⊥ : transverse mass
- Y : rapidity
- \sqrt{s} : collision energy

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Longitudinal momentum fraction in AA collisions

Nucleus-Nucleus collision

- 99% of the multiplicity below $p_{\perp} \sim 2 \text{ GeV}$
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200$ GeV)
- x ~ 4.10⁻⁴ at the LHC (√s = 5.5 TeV)
 ⊳ gluons at small x are the most important

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

1 Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

Gluon saturation

- consider a hadron or nucleus probed via gluon exchange
- at low energy, only valence quarks are present in the hadron wave function

François Gelis

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- when energy increases, new gluons are emitted
- the emission probability is $\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(\frac{1}{x})$, with x the longitudinal momentum fraction of the gluon
- at small-*x* (i.e. high energy), these logs need to be resummed

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

 as long as the gluon density remains small, the evolution is linear: the number of gluons produced at a given step is proportional to the number of gluons at the previous step

Balitsky, Fadin, Kuraev, Lipatov (1977)

François Gelis

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- eventually, the gluons overlap in phase-space
- gluon recombination becomes likely
- after this point, the evolution is non-linear Balitsky (1996), Kovchegov (2000) Jalilian-Marian, Kovner, Leonidov, Weigert (1999) Iancu, Leonidov, McLerran (2001)

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

Number of gluons per unit area :

$$ho \sim rac{\mathbf{x} \mathbf{G}_{\scriptscriptstyle A}(\mathbf{x}, \mathbf{Q}^2)}{\pi R_{\scriptscriptstyle A}^2}$$

Recombination cross-section :

$$\sigma_{gg \to g} \sim \frac{\alpha_s}{Q^2}$$

Recombination happens if $\rho \sigma_{gg \to g} \gtrsim 1$, i.e. $Q^2 \lesssim Q_s^2$, with : $Q_s^2 \sim \frac{\alpha_s x G_A(x, Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{\chi^{0.3}}$

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Saturation domain

François Gelis

Saturation momentum: constraints from data

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Eactorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting

Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

1 Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

Requirements

 Main difficulty: How to treat collisions involving a large number of partons?

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Requirements

- Main difficulty: How to treat collisions involving a large number of partons?
- Dilute regime : one parton in each projectile interact (what the standard perturbative techniques are made for)

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Requirements

- Main difficulty: How to treat collisions involving a large number of partons?
- Dense regime : multiparton processes become crucial
 > new techniques are required
 > multi-parton distributions are needed

François Gelis

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

CGC: Degrees of freedom

CGC = effective theory of small x gluons

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

$$J^{\mu} = \delta^{\mu +} \rho(\boldsymbol{x}^{-}, \boldsymbol{\vec{x}}_{\perp}) \qquad (0 < \boldsymbol{x}^{-} < 1/\Lambda^{+})$$

- The color sources *ρ* are random, and described by a probability distribution *W*_{Λ+}[*ρ*]
- Slow partons (k⁺ < Λ⁺) cannot be considered static over the time-scales of the collision process
 > must be treated as standard gauge fields
 > eikonal coupling to the current J^μ : A_μJ^μ

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

CGC: renormalization group evolution

Independence w.r.t $\Lambda^+ \rightarrow$ evolution equation (JIMWLK) :

$$\frac{\partial W_{\Lambda^{+}}}{\partial \ln(\Lambda^{+})} = \mathcal{H} \quad W_{\Lambda^{+}}$$
$$\mathcal{H} = \frac{1}{2} \int_{\vec{x}_{\perp}, \vec{y}_{\perp}} \frac{\delta}{\delta \alpha(\vec{y}_{\perp})} \eta(\vec{x}_{\perp}, \vec{y}_{\perp}) \frac{\delta}{\delta \alpha(\vec{x}_{\perp})}$$

where $-\partial_{\perp}^2 \alpha(\vec{x}_{\perp}) = \rho(1/\Lambda^+, \vec{x}_{\perp})$

- $\eta(\vec{x}_{\perp}, \vec{y}_{\perp})$ is a non-linear functional of ρ
- Resums all the powers of α_s ln(1/x) and of Q_s/p_⊥ that arise in loop corrections
- Simplifies into the BFKL equation when the source *ρ* is small (expand η in powers of *ρ*)

François Gelis

œ

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting

Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Collisions of two saturated projectiles Power counting

Leading Order Next to Leading Order Initial state factorization

Power counting

• CGC effective theory with cutoff at the scale Λ_0^+ :

• Expansion in g² in the saturated regime:

$$\frac{dN_1}{dyd^2\vec{\pmb{\rho}}_{\perp}}\sim \frac{1}{g^2}\left[c_0+c_1\,g^2+c_2\,g^4+\cdots\right]$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting

Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting

Leading Order

Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Oclisions of two saturated projectiles

Power counting Leading Order

Next to Leading Order Initial state factorization

Leading Order

Inclusive gluon spectrum at LO :

$$\frac{dN_1}{dyd^2\vec{p}_{\perp}}\Big|_{_{\rm LO}} \propto \int d^4x d^4y \ e^{ip \cdot (x-y)} \cdots \mathcal{A}^{\mu}(x) \mathcal{A}^{\nu}(y)$$
$$\underbrace{\left[\mathcal{D}_{\mu}, \mathcal{F}^{\mu\nu}\right] = J_1^{\nu} + J_2^{\nu}}_{\text{Yang-Mills equation}} \quad , \quad \lim_{t \to -\infty} \mathcal{A}^{\mu}(t, \vec{x}) = 0$$

(at LO, everything comes from classical fields)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting

Leading Order

Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting

Leading Order

Next to Leading Order

Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Ollisions of two saturated projectiles

Power counting Leading Order Next to Leading Order Initial state factorization

Next to Leading Order [FG, Venugopalan (2006)]

Inclusive gluon spectrum at NLO :

$$\frac{dN_{1}}{dyd^{2}\vec{p}_{\perp}}\Big|_{\rm NLO} = \left[\frac{1}{2}\int\limits_{\vec{u},\vec{v}\in\Sigma}\mathcal{G}(\vec{u},\vec{v})\,\mathbb{T}_{u}\mathbb{T}_{v} + \int\limits_{\vec{u}\in\Sigma}\beta(\vec{u})\,\mathbb{T}_{u}\right]\,\frac{dN_{1}}{dyd^{2}\vec{p}_{\perp}}\Big|_{\rm LO}$$

 $\boldsymbol{\Sigma} = ext{initial Cauchy surface} \ , \quad \mathbb{T}_{\boldsymbol{u}} \sim \delta / \delta \mathcal{A}_{ ext{init}}(\boldsymbol{u})$

(for certain choices of Σ , the functions $\mathcal{G}(\vec{u}, \vec{v})$ and $\beta(\vec{u})$ are calculable analytically)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting

Leading Order

Next to Leading Order

Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Ollisions of two saturated projectiles

Power counting Leading Order Next to Leading Order Initial state factorization

Leading Logs [FG, Lappi, Venugopalan (2008)]

Logs of Λ^+ and Λ^-

$$\begin{split} &\frac{1}{2} \int_{\vec{u}, \vec{v} \in \Sigma} \mathcal{G}(\vec{u}, \vec{v}) \, \mathbb{T}_{u} \mathbb{T}_{v} + \int_{\vec{u} \in \Sigma} \beta(\vec{u}) \, \mathbb{T}_{u} = \\ &= \ln \left(\Lambda^{+}\right) \, \mathcal{H}_{1} + \ln \left(\Lambda^{-}\right) \, \mathcal{H}_{2} + \text{terms w/o logs} \end{split}$$

 $\mathcal{H}_{1,2} = \text{JIMWLK}$ Hamiltonian

 \triangleright ensures the factorizability of these logs into JIMWLK-evolved distributions $W[\rho_{1,2}]$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting

Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Factorization of the Leading Logs of 1/x

• One can factorize all the powers of $\alpha_{s} \log(1/x_{12})$

Single inclusive gluon spectrum at Leading Log accuracy

$$\left\langle \frac{dN_{1}}{dyd^{2}\vec{\boldsymbol{p}}_{\perp}} \right\rangle_{\text{LLog}} = \int \left[D\rho_{1} D\rho_{2} \right] W_{1} \left[\rho_{1} \right] W_{2} \left[\rho_{2} \right] \underbrace{\frac{dN_{1} \left[\rho_{1,2} \right]}{dyd^{2} \vec{\boldsymbol{p}}_{\perp}}}_{\text{for fixed } \rho_{1,2}}$$

- The factor $dN_1/dyd^2\vec{p}_{\perp}$ under the integral does not depend on y: the rapidity dependence comes entirely from the distributions $W_{1,2}$
- This factorization establishes a link to other reactions. (such as DIS) in the saturated regime

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution

Color Glass Condensate

High energy collisions Power counting

Leading Order Next to Leading Order Factorization

Correlations

,2

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Multi-gluon correlations at Leading Log

 The previous factorization can be extended to multi-particle inclusive spectra :

$$\left\langle \frac{dN_n}{dy_1 d^2 \vec{\boldsymbol{p}}_{1\perp} \cdots dy_n d^2 \vec{\boldsymbol{p}}_{n\perp}} \right\rangle_{\text{LLog}} = \\ = \int \left[D\rho_1 \ D\rho_2 \right] \ W_1[\rho_1] \ W_2[\rho_2] \ \frac{dN_1[\rho_{1,2}]}{dy_1 d^2 \vec{\boldsymbol{p}}_{1\perp}} \cdots \frac{dN_1[\rho_{1,2}]}{dy_n d^2 \vec{\boldsymbol{p}}_{n\perp}} \right]$$

- Note: at Leading Log accuracy, all the rapidity correlations come from the evolution of the distributions W[ρ_{1,2}]
 ▷ they are a property of the pre-collision initial state
- This formula predicts long range (Δy ~ α_s⁻¹) correlations in rapidity

François Gelis

Gluon saturation Why small-x gluons matter

Gluon evolution Color Glass Condensate

High energy collisions Power counting

Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Why factorization works: causality

• The duration of the collision is very short: $au_{
m coll} \sim E^{-1}$

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Why factorization works: causality

- The duration of the collision is very short: $au_{
 m coll} \sim E^{-1}$
- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Why factorization works: causality

- The duration of the collision is very short: $au_{
 m coll} \sim E^{-1}$
- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the logarithms are intrinsic properties of the projectiles, independent of the measured observable

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

œ

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data

Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Correlations in the final state 2-hadron correlations in data Ridge in Au-Au collisions

Ridge in p-p collisions

Nucleus-nucleus collisions at RHIC

- Long range correlation in $\Delta \eta$ (rapidity)
- Narrow correlation in $\Delta \varphi$ (azimuthal angle)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data

Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Proton-proton collisions at the LHC

- Similar effect visible for high multiplicity p-p collisions, in an intermediate p⊥ window
- Much weaker than in AA collisions

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum
Importance of the initial stages

Long range rapidity correlations probe early times

$$t_{\text{correlation}} \leq t_{\text{freeze out}} \ \mathbf{e}^{-\frac{1}{2}|\eta_A - \eta_B}$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Initial classical color fields [Lappi, McLerran (2006)]

• At $\tau = 0^+$, the chromo- \vec{E} and \vec{B} fields form longitudinal "flux tubes" extending between the projectiles:

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- Correlation length in the transverse plane: $\Delta r_{\perp} \sim Q_s^{-1}$
- Correlation length in rapidity: $\Delta \eta \sim \alpha_s^{-1}$

François Gelis

œ

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Correlations in the final state 2-hadron correlations in data Ridge in Au-Au collisions Ridge in p-p collisions

Dumitru, FG, McLerran, Venugopalan (2008)

• η -independent fields lead to long range correlations :

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Dumitru, FG, McLerran, Venugopalan (2008)

• η -independent fields lead to long range correlations :

Particles emitted by different flux tubes are not correlated
 (RQ_s)⁻² sets the strength of the correlation

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Dumitru, FG, McLerran, Venugopalan (2008)

• η -independent fields lead to long range correlations :

- Particles emitted by different flux tubes are not correlated
 (RQ_s)⁻² sets the strength of the correlation
- At early times, the correlation is flat in Δφ

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Dumitru, FG, McLerran, Venugopalan (2008)

• η -independent fields lead to long range correlations :

- Particles emitted by different flux tubes are not correlated
 (RQ_s)⁻² sets the strength of the correlation
- At early times, the correlation is flat in Δφ
 A collimation in Δφ is produced later by radial flow

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Ridge: centrality dependence

Gavin, McLerran, Moschelli (2008)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Ridge: rapidity dependence

Dusling, FG, Lappi, Venugopalan (2009)

 Note: the central peak is not a CGC prediction. It is good old jet fragmentation, taken from PYTHIA in this plot

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Next to Leading Order

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Zero mode fluctuations Complete spectrum

Ridge: rapidity dependence

• The shape of the $y_q - y_p$ dependence depends on the rapidity of the trigger particle

the CGC provides testable predictions that may distinguish it from other models that also have "boost invariance"

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions Power counting Leading Order Next to Leading Order Eactorization

Correlations RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

François Gelis

œ

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

③ Correlations in the final state

2-hadron correlations in data Ridge in Au-Au collisions Ridge in p-p collisions

Origin of the angular correlation

Dumitru, Dusling, FG, Jalilian-Marian, Lappi, Venugopalan (2010)

- The long range rapidity correlations invoked in A-A collisions are also present in p-p collisions
- Whether there is a sufficient amount of radial flow to induce the azimuthal collimation is unknown
 - less particles are produced
 - · the system freezes out much earlier
- There is however an "intrinsic" angular correlation, that exists in the absence of flow (it was there in A-A collisions as well, but neglected because it is a small effect)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

• 2-gluon inclusive spectrum before the average over $\rho_{1,2}$:

 \triangleright this contribution dominates the 2-gluon spectrum in the regime where the parton densities are large

 \triangleright the average over $\rho_{1,2}$ amounts to connecting the red and green lines in all the possible ways (pairwise if the sources have Gaussian distributions)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Trivial connection (no correlation):

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Non-trivial connection (1):

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Non-trivial connection (2):

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Non-trivial connection (3):

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Non-trivial connection (4):

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Non-trivial connection (5):

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- Diagrams (1-4) have only back-to-back correlations
- (5) is the interesting one!

 \triangleright Momentum assignment of the unintegrated gluon distributions:

 $\left[\phi_1(\textbf{\textit{k}}_{\perp})\right]^2 \phi_2(|\textbf{\textit{p}}_{\perp} - \textbf{\textit{k}}_{\perp}|) \phi_2(|\textbf{\textit{q}}_{\perp} - \textbf{\textit{k}}_{\perp}|)$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

 In the saturation regime, unintegrated gluon distributions are peaked near Q_s:

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

• The presence of this peak is what correlates the directions of \vec{p}_{\perp} and \vec{q}_{\perp} around $\Delta \phi = 0$ when we perform the integration over \vec{k}_{\perp}

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

•
$$|\vec{\textbf{k}}_{\perp}| \sim Q_s$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- $|\vec{k}_{\perp}| \sim Q_s$ $|\vec{p}_{\perp} \vec{k}_{\perp}| \sim |\vec{q}_{\perp} \vec{k}_{\perp}| \sim Q_s$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- $|\vec{\textbf{k}}_{\perp}| \sim Q_s$
- $|\vec{\pmb{p}}_{\perp} \vec{\pmb{k}}_{\perp}| \sim |\vec{\pmb{q}}_{\perp} \vec{\pmb{k}}_{\perp}| \sim \mathsf{Q}_{\mathsf{s}}$
- If the momenta are smaller than the width of the distributions, there is no significant angular correlation

Similarly, for large momenta there is no correlation because the main contribution does not come from the peak of the distributions anymore

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

The effect is maximal for intermediate p_⊥, q_⊥ ~ Q_s:

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions

Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Emergence of hydrodynamical flow Hydrodynamics in AA collisions Toy scalar model Pressure at LO and NLO Unstable modes and resummation Zero mode fluctuations only Complete fluctuation spectrum

Stages of a nucleus-nucleus collision

- The Color Glass Condensate provides a framework to describe nucleus-nucleus collisions up to a time $\tau \sim Q_s^{-1}$
- The subsequent stages are well described by nearly ideal hydrodynamics

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution

Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations

Complete spectrum

Matching to hydrodynamics

 If a smooth matching from the CGC to Hydro is possible, there should be an overlap between their respective domain of applicability:

 $\triangleright\,$ one should be able to recover the fluid behavior by starting from the CGC. However, this is problematic at the moment

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow Hydro in AA collisions Toy scalar model

Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Reminder on hydrodynamics

Equations of hydrodynamics :

$$\partial_{\mu}T^{\mu\nu}=0$$

Additional inputs :

EoS: $p = f(\epsilon)$, Transport coefficients: η, ζ, \cdots

• Required initial conditions : $T^{\mu\nu}(\tau = \tau_0, \eta, \vec{x}_{\perp})$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow Hydro in AA collisions

Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Emergence of hydrodynamical flow

Hydrodynamics in AA collisions

Toy scalar model

Pressure at LO and NLO Unstable modes and resummation Zero mode fluctuations only Complete fluctuation spectrum

ϕ^4 field theory with a strong external source

Dusling, Epelbaum, FG, Venugopalan (2010)

Lagrangian

$$\mathcal{L} = rac{1}{2} (\partial_lpha \phi)^2 - V(\phi) + J \phi$$

$$V(\phi) = rac{g^2}{4!} \phi^4 \qquad J = heta(-x^0) \, \mathrm{e}^{\mathrm{a} \mathrm{Q} x^0} \, rac{\mathrm{Q}^3}{g}$$

- In 3+1-dim, g is dimensionless, and the only scale in the problem is Q, provided by the external source
- Q mimics the saturation scale
- The source is active only at $x^0 < 0$, and is switched off adiabatically when $x^0 \rightarrow -\infty$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model

Pressure at LO and NLO

Resummation Zero mode fluctuations Complete spectrum

Summary

Emergence of hydrodynamical flow

Hydrodynamics in AA collisions Toy scalar model

Pressure at LO and NLO

Unstable modes and resummation Zero mode fluctuations only Complete fluctuation spectrum

$T^{\mu\nu}$ at Leading Order

$$T_{_{\rm LO}}^{\mu\nu} = \partial^{\mu}\varphi\partial^{\nu}\varphi - g^{\mu\nu}\mathcal{L} , \quad \Box \varphi + V'(\varphi) = J , \quad \lim_{x^0 \to -\infty} \varphi(x) = 0$$

 \triangleright no single-valued relation between ϵ and p: no EoS at LO

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

$T^{\mu u}$ at Next to Leading Order

$$T^{\mu\nu}_{_{\rm NLO}} = \partial^{\mu}\varphi \partial^{\nu}\beta + \partial^{\mu}\beta \partial^{\nu}\varphi - g^{\mu\nu} \Big[\partial_{\alpha}\beta \partial^{\alpha}\varphi - \beta V'(\varphi)\Big] \\ + \int_{k} \Big[\partial^{\mu}a_{-k}\partial^{\nu}a_{+k} - \frac{g^{\mu\nu}}{2} \Big(\partial_{\alpha}a_{-k}\partial^{\alpha}a_{+k} - V''(\varphi)a_{-k}a_{+k}\Big)\Big]$$

$$\left[\Box + V''(\varphi)\right] \mathbf{a}_{\pm \mathbf{k}} = \mathbf{0} , \qquad \qquad \lim_{\mathbf{x}^0 \to -\infty} \mathbf{a}_{\pm \mathbf{k}}(\mathbf{x}) = \mathbf{e}^{\pm i \mathbf{k} \cdot \mathbf{x}}$$

$$\left[\Box + V''(\varphi)\right]\beta = -\frac{1}{2}V'''(\varphi)\int_{\mathbf{k}} \mathbf{a}_{-\mathbf{k}}\mathbf{a}_{+\mathbf{k}}, \quad \lim_{\mathbf{x}^0\to-\infty}\beta(\mathbf{x}) = 0$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model

Pressure at LO and NLO

Resummation Zero mode fluctuations Complete spectrum

$T^{\mu\nu}$ at Next to Leading Order: secular divergences

NLO corrections for g = 1

- $\epsilon_{_{\rm NLO}}$ is a small correction at all times (it is protected from divergences by the conservation of $T^{\mu\nu}$)
- $p_{_{\rm NLO}}$ is still small at $x^0 = 0$
- $p_{_{
 m NLO}}$ diverges exponentially when $x^0
 ightarrow +\infty$

Summary

François Gelis
François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO

Resummation

Zero mode fluctuations Complete spectrum

Summary

Emergence of hydrodynamical flow

Hydrodynamics in AA collisions Toy scalar model Pressure at LO and NLO Unstable modes and resummation Zero mode fluctuations only Complete fluctuation spectrum

Stability analysis

$$\ddot{\varphi}_{0}(t) + V'(\varphi_{0}(t)) = 0$$

$$\ddot{a} + \left[\mathbf{k}^{2} + \underbrace{V''(\varphi_{0}(t))}_{m^{2}(t)} \right] \mathbf{a} = 0$$

- It has two independent solutions a₁ and a₂
- If *T* is the period of φ₀(*t*), one can relate a_{1,2}(*T*) to a_{1,2}(0) by a linear transformation :

$$M_{k} \equiv \begin{pmatrix} a_{1}(T) & a_{2}(T) \\ \dot{a}_{1}(T) & \dot{a}_{2}(T) \end{pmatrix} \begin{pmatrix} a_{1}(0) & a_{2}(0) \\ \dot{a}_{1}(0) & \dot{a}_{2}(0) \end{pmatrix}^{-1}$$

• det $(M_k) = 1$ (from unitarity, since $\varphi_0(t) \in \mathbb{R}$)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation

Zero mode fluctuations Complete spectrum

Stability analysis

(In)stability conditions

 $\operatorname{tr}(M_k) < 2$: a_1 and a_2 are stable

tr $(M_k) = 2$: a_1 is stable and a_2 diverges linearly

tr $(M_k) > 2$: a_1 is stable and a_2 diverges exponentially

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO

Resummation

Zero mode fluctuations Complete spectrum

Resummation [FG, Lappi, Venugopalan (2007)]

Reminder: energy-momentum tensor at NLO

$$\boldsymbol{\mathcal{T}}_{_{\mathrm{NLO}}}^{\mu\nu} = \left[\frac{1}{2}\int\limits_{\boldsymbol{\vec{u}},\boldsymbol{\vec{v}}\in\Sigma} \mathcal{G}(\boldsymbol{\vec{u}},\boldsymbol{\vec{v}}) \,\mathbb{T}_{\boldsymbol{u}}\mathbb{T}_{\boldsymbol{v}} + \int\limits_{\boldsymbol{\vec{u}}\in\Sigma} \boldsymbol{\beta}(\boldsymbol{\vec{u}}) \,\mathbb{T}_{\boldsymbol{u}}\right] \,\boldsymbol{\mathcal{T}}_{_{\mathrm{LO}}}^{\mu\nu}$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO

Resummation

Zero mode fluctuations Complete spectrum

Resummation [FG, Lappi, Venugopalan (2007)]

Resummed energy-momentum tensor $\mathcal{T}_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2}\int\limits_{\vec{u},\vec{v}\in\Sigma}\mathcal{G}(\vec{u},\vec{v}) \,\mathbb{T}_{u}\mathbb{T}_{v} + \int\limits_{\vec{u}\in\Sigma}\beta(\vec{u})\,\mathbb{T}_{u}\right] \,\mathcal{T}_{\text{LO}}^{\mu\nu}$

contains the complete LO + NLO
 + a subset of the higher orders :

$$T_{\text{resummed}}^{\mu\nu} = \frac{\mathsf{Q}^4}{g^2} \left[\underbrace{c_0 + c_1 \, g^2}_{\text{fully}} + \underbrace{c_2 \, g^4 + \cdots}_{\text{partly}}\right]$$

 resums the leading divergent terms (i.e. the terms where each extra g² is accompanied by a growing fluctuation)

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO

Resummation

Zero mode fluctuations Complete spectrum

Why does it cure the secular divergences?

• $\exp[\cdots \mathbb{T}_{u}]$ shifts the initial condition of a classical field:

$$\exp\left[\int_{u\in\Sigma} \alpha(\boldsymbol{u}) \mathbb{T}_{\boldsymbol{u}}\right] \mathcal{F}[\varphi_{\text{init}}] = \mathcal{F}[\varphi_{\text{init}} + \alpha]$$

Equivalent form of the resummation

$$\exp\left[\frac{1}{2}\int_{\vec{u},\vec{v}\in\Sigma}\mathcal{G}(\vec{u},\vec{v})\mathbb{T}_{u}\mathbb{T}_{v} + \int_{\vec{u}\in\Sigma}\beta(\vec{u})\mathbb{T}_{u}\right]T_{Lo}^{\mu\nu}[\varphi_{init}]$$
$$=\int[D\alpha]\exp\left[-\frac{1}{2}\int_{\vec{u},\vec{v}\in\Sigma}\alpha(\vec{u})\mathcal{G}^{-1}(\vec{u},\vec{v})\alpha(\vec{v})\right]T_{Lo}^{\mu\nu}[\varphi_{init} + \alpha + \beta]$$

▷ initial condition at $x^0 = 0$ shifted by a Gaussian-distributed fluctuation, but full non-linear evolution at $x^0 > 0$ ▷ no runaway contributions [Son (1996), Khlebnikov, Tkachev (1996)]

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation

Zero mode fluctuations Complete spectrum

Spectrum of fluctuations

• The variance of the Gaussian fluctuations is:

$$\mathcal{G}(\vec{\mathbf{x}}, \vec{\mathbf{y}}) = \int \frac{d^3 \vec{\mathbf{k}}}{(2\pi)^3 2|\mathbf{k}|} \, \mathbf{a}_{+\mathbf{k}}(0, \vec{\mathbf{x}}) \mathbf{a}_{-\mathbf{k}}(0, \vec{\mathbf{y}})$$
$$\left[\Box + V''(\varphi_0(t))\right] \mathbf{a}_{\pm\mathbf{k}} = 0 \qquad \lim_{x^0 \to -\infty} \mathbf{a}_{\pm\mathbf{k}}(x) = e^{\pm i\mathbf{k} \cdot \mathbf{x}}$$

• $a_{\pm k}(t, \vec{x}) =$ plane wave distorted by the background field :

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation

Zero mode fluctuations Complete spectrum

François Gelis

œ

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations

Complete spectrum

Summary

Emergence of hydrodynamical flow

Hydrodynamics in AA collisions Toy scalar model Pressure at LO and NLO Unstable modes and resummation Zero mode fluctuations only Complete fluctuation spectrum

Time evolution of the pressure

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Time evolution of the pressure

- No more divergence of the pressure when $x^0
 ightarrow +\infty$
- *P* relaxes to $\epsilon/3 \ge \text{EoS}$ of a 4-dim scale invariant system

What makes $\rho(\phi, \dot{\phi})$ spread?

• In a non-harmonic potential, fields with different amplitudes oscillate at different frequencies

 \triangleright their relative phase increases linearly in time

They spread over the entire orbit in a time

$$t_{
m relax} pprox rac{2\pi}{\Delta lpha \cdot rac{d\omega}{d\phi}}$$

• In our toy model: $d\omega/d\phi \sim g$ and $\Delta lpha \sim \mathsf{Q}$

$$t_{
m relax} \sim rac{1}{g Q}$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations

Complete spectrum

What makes the pressure relax?

 If ρ(φ, φ) spreads uniformly around the orbit, the ensemble average leads to the same result as the time average for one field configuration :

$$\lim_{t\to+\infty} \langle \epsilon - 3P \rangle_{\alpha,\dot{\alpha}} = \frac{1}{T} \int_0^T dt \; [\epsilon - 3P]_{\alpha,\dot{\alpha}=0} = 0 \; .$$

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

François Gelis

œ

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Summary

Emergence of hydrodynamical flow

Hydrodynamics in AA collisions Toy scalar model Pressure at LO and NLO Unstable modes and resummation Zero mode fluctuations only Complete fluctuation spectrum

Relaxation of the pressure

g = 0.5

• Note: g = 0.5 is a very small coupling in this model $(V(\phi)$ has a 1/4! prefactor)

Coupling dependence

g dependence at fixed ϵ

François Gelis

Gluon saturation Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

- The relaxation time decreases rapidly with increasing g
- Note: g = 8 in this theory may be comparable to $g_s = 2$ in QCD, due to the 1/4! in the potential
- Caveat: our calculation becomes less reliable at large g

Energy distribution

- At t = 0, narrow Gaussian fluctuations
- Very rapid change of shape around $t \approx 30$
- Shape closer to Bose-Einstein later on (but not quite)

Summary

- Collisions of hadrons/nuclei at high energy require some knowledge about the multigluon Fock states of the projectiles. An effective description of these states is provided by the color glass condensate
- Some new correlations among the final state particles emerge as a consequence of these high density states
- The CGC computation of the energy-momentum tensor in heavy ion collisions has several problems :
 - No equation of state at LO
 - Secular divergences at NLO due to instabilities
- A resummation of higher order terms leads to :
 - Cancellation of all the secular divergences
 - · Relaxation of the pressure towards an equation of state
 - More thermal-like energy density fluctuations

François Gelis

Gluon saturation

Why small-x gluons matter Gluon evolution Color Glass Condensate

High energy collisions

Power counting Leading Order Next to Leading Order Factorization

Correlations

RHIC and LHC data Ridge in Au-Au collisions Ridge in p-p collisions

Emergence of flow

Hydro in AA collisions Toy scalar model Pressure at LO and NLO Resummation Zero mode fluctuations Complete spectrum

Power counting

• The instabilities are triggered by the 2-point function :

- Power counting : $\mathcal{G} \sim \mathcal{O}(1)$, $\sim \mathbb{T}\mathcal{A} \sim \mathcal{O}(g \ e^{\sqrt{\mu \tau}})$
- This 1-loop term is of order $g^2 e^{2\sqrt{\mu\tau}}$ relative to the LO

Power counting

- At *n*-loop order, one should pick the terms that have the fastest growth in time
 - \rhd maximize the number of locations where the initial field is perturbed on the light-cone, while minimizing the powers of $\alpha_{\rm s}$

• This 2-loop term is of order $g^4 e^{4\sqrt{\mu\tau}}$ relative to the LO

Power counting

• Non-Gaussian correlations are suppressed :

- Power counting : $\mathcal{G}_{3} \sim \mathcal{O}(g)$, $\sim \mathcal{O}(g \ e^{\sqrt{\mu au}})$
- This 2-loop term is of order g⁴ e^{3õτ} relative to the LO
 ▷ subleading

