A calibration experiment for the AGATA pulse shape analysis

Stefanie Klupp

Technische Universität München

AGATA Week 2010 Lyon 22th- 26th November 2010

Contents

Experimental concept

Goals
Analysis strategy

Test measurement with a centred Na22 source

Position resolution of the barycentre Position resolution of a single interaction

Needs for a real PSA calibration experiment with a Na22 source Improvement with respect to the present measurement Estimation of the measurement time

Experimental concept

Goals

- Investigate parameters of PSA systematically
- Experimental method that could be used online
- Simple mechanical setup
- No extra effort on DAQ
- Short measurement time

1st test experiment: Position resolution of A001 and A003

- Measurement with a Na22 source at LNL Legnaro
- Only one source position measured

Overview of the analysis

Two possible event selections

- Barycentre analysis: Events with coincident energy depositions of 511 keV in one segment
- Compton analysis: Events with a Compton scattering from one segment into another segment

Narval settings

- Different signal basis: JASS, ADL (and MGS)
- Extensive grid search
- Barycentre

Barycentre analysis: Geant4 simulation

Barycentre analysis: Experimental results

JASS: 1 mm grid ADL: 2 mm grid

Barycentre analysis: Distance spectrum

Definition

▶ $d = |\vec{d}|$: Distance between line and source position

Obtained results

- JASS and ADL show different distributions.
- Geant4 and experiment differ due to finite resolution of PSA.

smearing distribution (JASS/ADL)	σ [mm]	χ^2/Ndf
Gauss	3.0 / 2.3	11.5 / 17.4
Laplace	2.3 / 1.8	6.1 / 12.2
87(87)% Gauss + 13(13)% randomly	2.2 / 1.6	1.3 / 2.2
assigned points in the hit segment		

smearing distribution (JASS/ADL)	σ [mm]	χ²/Ndt
Gauss	3.0 / 2.3	11.5 / 17.4
Laplace	2.3 / 1.8	6.1 / 12.2
87(87)% Gauss + 13(13)% randomly	2.2 / 1.6	1.3 / 2.2
assigned points in the hit segment		
89(88)% Laplace + 11(12)% randomly	1.8 / 1.3	1.5 / 1.4
assigned points in the hit segment		

From the barycentre to a single interaction analysis

 \Rightarrow Compton analysis selects mostly single hit events.

Selection of Compton scattered events

- ▶ 2 hit segments with $\sum E_{\text{segment}} \approx 511 \text{ keV}$ (each crystal)
- ▶ Scattering angle: $|\theta_{\sf Compton\ formula} \theta_{\sf geometry}| < \Delta \theta_{\sf max} = 0.3$

Additionally the time order of the interactions has to be determined:

- Problem: Ambiguity of Compton formula leads to correct identification of 1st hit segment only in 78% of all events.
- Geometric determination of 1st hit segment (succeeds in 94% of all events)

N.J. Hammond et al. / Nuclear Instruments and Methods in Physics Research A 547 (2005) 535–540

Position resolution of a single interaction

Energy dependant position resolution

$$ightarrow$$
 assumption: $\sigma(E) = \sigma_0 \sqrt{\frac{511 \text{keV}}{E}}$, $E \geq 150 \text{keV}$

Position resolution of a single interaction

Energy dependant position resolution

$$ightarrow$$
 assumption: $\sigma(E) = \sigma_0 \sqrt{\frac{511 \text{keV}}{E}}$, $E \geq 150 \text{keV}$

smearing distribution (JASS/ADL)	σ_0 [mm]	χ^2/Ndf
Gauss	2.7 / 2.3	0.5 / 0.6
Laplace	2.0 / 1.7	0.4 / 0.4

Needs for a real PSA calibration experiment

Disadvantage of the present Na22 measurement

Symmetric setup ⇒ Only an overall position resolution of both crystals can be determined.

Setup of an improved Na22 measurement

Influence of the position smearing of the far detector

Near: barycentre, far: barycentre

⇒ Resolution of individual crystals (segments) can be determined.

Estimation of the measurement time using Geant4

- Assumed Na22 source activity: 10kBq
- $ightharpoonup \sim 7000$ counts in distance spectra necessary for analysis

Event	approx. measurement
selection	time / source position
Barycentre (near),	8 min
barycentre (far)	
Compton (near),	36 min
barycentre (far)	
Compton (near),	335 min
Compton (far)	

Conclusion

Results of 1st test measurement

- ▶ Obtained barycentre position resolution of A001 and A003 at 511 keV: $\sigma(JASS) \approx 2.0 \text{ mm}$, $\sigma(ADL) \approx 1.5 \text{ mm}$
- ► Compton scattered events are suitable to study single hits. $\Rightarrow \sigma_0 \sim 2 \text{ mm}$

Outlook for new measurement

- Determination of the position resolution of single crystals / segments possible
- Simple and fast experimental procedure

Appendix

Compton analysis: Experimental results, $E \ge 150 \, \text{keV}$

Comparison of the Gauss and Laplace distribution

Gauss: $FWHM = 2.35 \cdot \sigma$ Laplace: $FWHM = 0.98 \cdot \sigma$

Position smearing and distance spectra

Barycentre analysis

Compton analysis

$$\sigma(E) = \sigma_0 \sqrt{rac{511 \, \mathrm{keV}}{E}}$$

From the barycentre to a single interaction analysis

 \Rightarrow Compton analysis selects mostly single hit events

Influence of the position smearing of the far detector on the position resolution of the near detector A003

Near: barycentre, far: barycentre

⇒ Resolution of individual crystals (segments) can be determined with a roughly known resolution of one detector.

Examples for minimization functions

