Lifetime measurements of the neutron-rich Cr isotopes

J.J. Valiente-Dobón (LNL-INFN)

Overview

- Physics motivation
- Understanding the new island of inversion around $\mathrm{N}=40{ }^{60} \mathrm{Cr}$
- Disentagling the $E(5)$ character of ${ }^{58} \mathrm{Cr}$
- Setup and very preliminary results
- Counting rate considerations: Future experiments

Nuclei in the $f p$ shell

The role of the $g_{9 / 2}$ and $d_{5 / 2}$ orbitals

Generating collectivity

The experimental level schemes are more collective than the calculated ones.
S. Lenzi et al., LNL Ann. Rep. 2008

The evolution of the deformation in the Cr isotopes is better reproduced including $\mathrm{d}_{5 / 2}$ orbital

Lenzi, Nowacki, Poves, Sieja (to be published)

Shell-Model caculations ${ }^{60} \mathrm{Cr}$

Lifetime measurements will elucidate the involvement of the $d_{5 / 2}$ orbital quasi-SU(3) symmetry

${ }^{58} \mathrm{Cr}$ is a $\mathrm{E}(5)$ Shape-Phase-Transition Critical Point?

$6^{+}-3219$	3159	3130	2990	3188	3299
$4^{+}-1937$	1936	1937	1770	1885	2051
$2^{+} \underline{8} 80$	880	882	880	870	1102
$0^{+} \underline{0}$	0	0	0	0	0
EXP.	$E(5)$	IBA	KB3G	FPD6	GXPF1

${ }^{58} \mathrm{Cr}$ gives the opportunity to compare analytic, algebraic and microscopic models in the same physical system.

$$
B(E 2)=197(56) e^{2} f m^{4}
$$

A. Bürger et al. PLB 622 (2005) 29.

Experimental $B(E 2)$ values are needed to firmly demonstrate the existence of $E(5)$ symmetry in ${ }^{58} \mathrm{Cr}$ (two complementary experiments):
-First experiment LNL to measure $B(E 2)$ yrast states
-Second experimental proposal at AGATA-PRESPEC at GSI to measure B(E2) non-yrast

AGATA + PRISMA + Plunger

Y singles 70 kHz $\mathrm{d}_{\text {AGATA }}=\mathrm{d}_{\text {nominal }}-55 \mathrm{~mm}=180 \mathrm{~mm}$

Plunger setup

Counting rate in AGATA

Shaping time $1.5 \mu \mathrm{~s}$ - the intrinsic resolution does not change much

Counting rate issue

- Starting point $4 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Mg} \rightarrow$ end up with $4 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Nb}$

Degrader	Thickness	N^{0} atoms	Energy loss
Mg	$4 \mathrm{mg} / \mathrm{cm}^{2}$	10×10^{19}	$\sim 95 \mathrm{MeV}$
Nb	$4 \mathrm{mg} / \mathrm{cm}^{2}$	2.5×10^{19}	$\sim 65 \mathrm{MeV}$
Ta	$4 \mathrm{mg} / \mathrm{cm}^{2}$	1.3×10^{19}	$\sim 48 \mathrm{MeV}$

${ }^{93} \mathrm{Nb}$: low $\mathrm{B}(\mathrm{E} 2) \sim 0.3 \mathrm{e}^{2 \mathrm{ffm}}{ }^{4}$ compared to ${ }^{24} \mathrm{Mg}$: $\mathrm{B}(\mathrm{E} 2) \sim 400 \mathrm{e}^{2 \mathrm{ffm}}{ }^{4}$
Should take into account also the cross section in degrader for coming experiments

Results: PRISMA analysis

Fully implemented in the PRISMA library the aberrations corrections \rightarrow Preliminary, can be still done better

Results: AGATA Demostrator

Three distances 20-45-150 $\mu \mathrm{m}$

Latest PSA signal bases calculated by B. Bruynee Rough correction on neutron damage effects using the parameters modelled by B. Bruyneel

Coming experiments

- RDDS lifetime measurement in the region of the neutron-rich doubly magic ${ }^{132} \mathrm{Sn}$: Lifetime of the 6^{+}state in ${ }^{136} \mathrm{Te}$ - A. Gadea
- Beam ${ }^{136} \mathrm{Xe}$ at 1.2 GeV onto ${ }^{238} \mathrm{U}-8$ days
- Structure beyond the $\mathrm{N}=50$ shell closure in neutron-rich nuclei in the vicinity of ${ }^{78} \mathrm{Ni}$: The case of $\mathrm{N}=51$ nuclei - D. Verney, G .
Duchene, G de Angelis
- Beam ${ }^{82} \mathrm{Se}$ at 570 MeV onto ${ }^{238} \mathrm{U}-10$ days
- Lifetimes of intruder states in $N \sim 20$ sd-pf-shell neutron-rich nuclei R. Chapman, F. Hass
- Beam ${ }^{36} \mathrm{~S}$ at 216 MeV onto ${ }^{208} \mathrm{~Pb}-8$ days
$17^{\text {th }}-18^{\text {th }}$ January 2011 Meeting at LNL for the preparation of the coming and future experiments.

Summary

- Study of the Cr new region of deformation - Lifetimes measurements
- Initial problems with counting rate solved(?) by using a Nb degrader
- Analysis on the PRISMA part almost completed: Aberrations corrected.
- AGATA analysis
- Check the consistency of the analysis with previous performed experiments at LNL with CLARA -Statistics
- Lifetime analysis

Building up collectivity

	RAPID COMMUNICATIONS
PHYSICAL REVIEW C	OCTOBER 1995
A. P. Zuker, ${ }^{1}$ J. Retamosa, ${ }^{2}$ A. Poves, ${ }^{2}$ and E. Caurier ${ }^{1}$ ${ }^{1}$ Physique Théorique, Bâtiment 40/I CRN, Institut National de Physique Nucléaire et des Particles-CNRS/Université Louis Pasteur, Boite Postale 28, F-67037 Strasbourg Cedex 2, France ${ }^{2}$ Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain (Received 13 July 1994)	
Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another-or the same-major shell, behave systematically as backbending rotors. The dominance of the $q \cdot q$ component of the interaction is related to an approximate "quasi-SU3" symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a "pseudo-SU3" coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed $B(E 2)$ rates at the beginning of the region.	

Quadrupole deformation can be generated by using a quadrupole force with the central field in the subspace spanned by a sequence of $\Delta j=2$ orbits that come lowest by the spin-orbit splitting representing this relevant subspace a quasi-SU3. In the Cr region it happens something similar to what happens in the Island of inversion ${ }^{32} \mathrm{Mg}$.

RDDS method for MNT

${ }^{48} \mathrm{Ca}$ onto ${ }^{208} \mathrm{~Pb}$ at 310 MeV

RDDS spectra of the 2^{+}and $11 / 2^{-}$in ${ }^{50} \mathrm{Ca}$ and ${ }^{51} \mathrm{Sc}$ (mass gate in PRISMA)

Lifetimes of ${ }^{50} \mathrm{Ca}$ and ${ }^{51} \mathrm{Sc}$
A. Gadea et al., Acta Phys. Pol. B 381311 (2007)
D. Mengoni et al., Eur. Phys. J. A42 387 (2009).
J.J.V.D et al., Phys. Rev. Lett. 102242502 (2009).

Beam time request

-Beam: ${ }^{64} \mathrm{Ni}$ at 410 MeV 5 pnA - Plunger: $1 \mathrm{mg} / \mathrm{cm}^{2}$ Ta backing $1 \mathrm{mg} / \mathrm{cm}^{2}{ }^{238} \mathrm{U}+$ degrader $\sim 3 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Mg}$
-Five distances:
-Lifetimes range from $\sim 0.5 \mathrm{ps}$ up to $\sim 8 \mathrm{ps}$
-Distances range ($\beta \approx 10 \%$) $\sim 20 \mu \mathrm{~m}$ up to $\sim 200 \mu \mathrm{~m}$
-Around 150-200 counts in the weakest populated transitions for each distance

$$
{ }^{.58} \mathrm{Cr} 6^{+} \text {and }{ }^{60} \mathrm{Cr}^{2+} 4^{+}
$$

-This reaction with the present setup allows to measure the two nuclei contemporarily \rightarrow Complementary to RIB studies with dedicated beam time for each nucleus of interest.
-Strong link and feedback with parallel theoretical investigations

$$
\text { We request a total of } 6 \text { days of beam time. }
$$

$E(5)$ symmetry in the ${ }^{58} \mathrm{Cr}$ isotope

The $R(4 / 2)$ of ${ }^{58} \mathrm{Cr}$ has exactly the value predicted for $E(5)$ critical point

Excitation energies in ${ }^{58} \mathrm{Cr}$ are in very good agreement to the predictions of the $E(5)$ symmetry

S. Zhu et al., PRC 74, 064315 (2006). N. Marginean et al., PLB (2006) 696

Summary of the scientific motivation

- Measurement of $B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)$and $B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)$in ${ }^{60} \mathrm{Cr}$
- To understand the development of deformation in neutron-rich Cr isotopes when going towards $\mathrm{N}=40$
- Relevance of the $d_{5 / 2}$ orbital in building up the deformation in the region \rightarrow New Island of Inversion at $\mathrm{N}=40$
- Measurement of $\mathrm{B}\left(\mathrm{E} 2 ; 2^{+} \rightarrow 0^{+}\right), \mathrm{B}\left(\mathrm{E} 2 ; 4^{+} \rightarrow 2^{+}\right), \mathrm{B}\left(\mathrm{E} 2 ; 6^{+} \rightarrow 4^{+}\right)$in ${ }^{58} \mathrm{Cr}$
- Is the yrast structure of ${ }^{58} \mathrm{Cr}$ compatible with the $E(5)$ critical point? \rightarrow Future experiment at GSI with AGATA+PRESPEC to look at non-yrast states
- Unique physical system to explore the bridge between very different model approaches.

Experimental details

${ }^{64} \mathrm{Ni}$ on ${ }^{238} \mathrm{U}$ at 400 MeV CLARA+ PRISMA

Experimental details

${ }^{58} \mathrm{Cr}$ and ${ }^{60} \mathrm{Cr}$

On the bases of a previous experiment, we habe performed the beam time estimation. The same reaction was used $\left(400 \mu \mathrm{~g} / \mathrm{cm}^{2} 238 \mathrm{U}-3 \%\right.$ CLARA efficiency) \rightarrow Optimized beam time request.

AGATA Demonstrator \& PRISMA

RDDS method for deep inelastic reactions

Deformation evolution towards $\mathrm{N}=40$

$\mathrm{N}=40$ subshell gap in ${ }^{68} \mathrm{Ni}$, disappears when protons are removed from the $f_{7 / 2} \rightarrow$ Monopole part of the tensor interaction

S. Lunardi et al., Phys. Rev. C 76, 034303 (2007).
S. Lenzi et al., LNL Annual Report (2008). P. Adrich et al. Phys. Rev. C 77, 054306 (2008). O. Sorlin et al., Eur. Phys. J A 1655 (2003).

N. Aoi, et al., PRL 102, 012502 (2009) (p, p^{\prime}) reaction with radioactive beams

$\mathrm{N}=40$ subshell gap

Monopole effect of the tensor interaction in shell evolution

4 spin
wave function of relative motion
T. Otsuka et al., PRL95 232502 (2005)

- Cr isotopes 4 holes in the $\pi f_{7 / 2}$
-Atraction between the $\mathrm{f}_{7 / 2}$ and $\mathrm{f}_{5 / 2}$
-Repulsion between the $\mathrm{f}_{7 / 2}$ and $g_{9 / 2}$
-Disappearance $\mathrm{N}=40$ subshell gap
-Role of the $d_{5 / 2}$?

Building up collectivity

Starting from the $\operatorname{SU}(3)$ model of Eliott where the classical case of ${ }^{20} \mathrm{Ne}$ is described in the full sd but could also be described within a quasi-SU3 by considering only the relevant $\Delta j=2$ orbits $d_{5 / 2}$ and the $s_{1 / 2}$.

Spherical shell model description of rotational motion

$$
\text { A. P. Zuker, }{ }^{1} \text { J. Retamosa, }{ }^{2} \text { A. Poves, }{ }^{2} \text { and E. Caurier }{ }^{1}
$$

'Physique Théorique, Bâtiment 40/l CRN, Institut National de Physique Nucléaire et des Particles-CNRS/Université Louis Pasteur,
Boite Postale 28, F-67037 Strasbourg Cedex 2, France
${ }^{2}$ Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain (Received 13 July 1994)

Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another-or the same-major shell, behave systematically as backbending rotors. The dominance of the $q \cdot q$ component of the interaction is related to an approximate "quasi-SU3" symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a "pseudo-SU3" coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed $B(E 2)$ rates at the beginning of the region.

Quadrupole deformation can be generated by using a quadrupole force with the central field in the subspace spanned by a sequence of $\Delta j=2$ orbits that come lowest by the spin-orbit splitting representing this relevant subspace a quasi-SU3. In the Cr region it happens something similar to what happens in the Island of inversion ${ }^{32} \mathrm{Mg}$.

$B(E 2)$ known in ${ }^{58} \mathrm{Cr}$

GSI - FRS + RISING
Coulomb excitation at relativistic energies

Table 2
Number of projectiles identified as Cr before and after the target ($N_{\text {pro }}$), number of counts in the 2_{1}^{+}peaks (N_{γ}), γ-ray intensities $\left(I_{\gamma}\right), B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0^{+}\right)$values and gamma-ray energies (E_{γ}), for ${ }^{54,56,58} \mathrm{Cr}$

Isotope	${ }^{54} \mathrm{Cr}$	${ }^{56} \mathrm{Cr}$	${ }^{58} \mathrm{Cr}$
$N_{\text {pro }}\left[10^{6}\right]$	37	18	12
N_{γ}	$301(64)$	$126(44)$	$148(43)$
$I_{\gamma}\left[10^{2}\right]$	$211(27)$	$61(20)$	$73(19)$
$B(\mathrm{E} 2)[\mathrm{Wu}]$	$14.6(0.6)^{\mathrm{a}}$	$8.7(3.0)$	$14.8(4.2)$
$E\left(2_{1}^{+}\right)[\mathrm{keV}]$	835^{a}	1007^{a}	$880^{\mathrm{a}} /$
			7.8 ps

A. Bürger et al. / Physics Letters B 622 (2005) 29.

Collectivity at $\mathrm{N} \leq 40, \mathrm{Z}<28$

single particle energies in a deformed WS potential

K. Yoshida and M. Yamagami, PRC 77, 044312 (2008)

H. Oba and M. Matsuo, Prog. Theo. Phys. 120, 1432008

Deep inelastic reactions

