Lifetime measurements of the neutron-rich Cr isotopes

J.J. Valiente-Dobón (LNL-INFN)

Overview

- Physics motivation
 - Understanding the new island of inversion around N=40 ⁶⁰Cr
 - Disentagling the E(5) character of ⁵⁸Cr
- Setup and very preliminary results
- Counting rate considerations: Future experiments

Nuclei in the fp shell

The role of the $g_{9/2}$ and $d_{5/2}$ orbitals

Generating collectivity

The experimental level schemes are more collective than the calculated ones.

S. Lenzi et al., LNL Ann. Rep. 2008

The evolution of the deformation in the Cr isotopes is better reproduced including $d_{5/2}$ orbital

Lenzi, Nowacki, Poves, Sieja (to be published)

Shell-Model caculations ⁶⁰Cr

Lifetime measurements will elucidate the involvement of the $d_{5/2}$ orbital quasi-SU(3) symmetry

⁵⁸Cr is a E(5) Shape-Phase-Transition Critical Point?

⁵⁸Cr gives the opportunity to compare analytic, algebraic and microscopic models in the same physical system.

A. Bürger et al. PLB 622 (2005) 29.

Experimental B(E2) values are needed to firmly demonstrate the existence of E(5) symmetry in ⁵⁸Cr (two complementary experiments):

•First experiment LNL to measure B(E2) yrast states

•Second experimental proposal at AGATA-PRESPEC at GSI to measure B(E2) non-yrast

AGATA + PRISMA + Plunger

Plunger setup

Counting rate in AGATA

Shaping time 1.5µs – the intrinsic resolution does not change much

Counting rate issue

Starting point 4mg/cm² Mg → end up with 4mg/cm² Nb

Degrader	Thickness	Nº atoms	Energy loss
Mg	4 mg/cm ²	10x10 ¹⁹	~95MeV
Nb	4 mg/cm ²	2.5x10 ¹⁹	~65MeV
Та	4 mg/cm ²	1.3x10 ¹⁹	~48MeV

⁹³Nb: low B(E2)~0.3e²fm⁴ compared to ²⁴Mg: B(E2)~400e²fm⁴ Should take into account *also* the cross section in degrader for coming experiments

Results: PRISMA analysis

Fully implemented in the PRISMA library the aberrations corrections → Preliminary, can be still done better

Results: AGATA Demostrator

Three distances 20-45-150µm

Coming experiments

 RDDS lifetime measurement in the region of the neutron-rich doubly magic ¹³²Sn: Lifetime of the 6⁺ state in ¹³⁶Te – A. Gadea

- Beam 136 Xe at 1.2GeV onto 238 U - 8 days

- Structure beyond the N=50 shell closure in neutron-rich nuclei in the vicinity of ⁷⁸Ni: The case of N=51 nuclei – D. Verney, G. Duchene, G de Angelis
 - Beam ⁸²Se at 570MeV onto ²³⁸U 10 days
- Lifetimes of intruder states in N ~ 20 sd-pf-shell neutron-rich nuclei R. Chapman, F. Hass
 - Beam ³⁶S at 216 MeV onto ²⁰⁸Pb 8 days

17th-18th January 2011 Meeting at LNL for the preparation of the coming and future experiments.

Summary

- Study of the Cr new region of deformation Lifetimes measurements
- Initial problems with counting rate solved(?) by using a Nb degrader
- Analysis on the PRISMA part almost completed: Aberrations corrected.
- AGATA analysis
 - Check the consistency of the analysis with previous performed experiments at LNL with CLARA -Statistics
 - Lifetime analysis

Building up collectivity

Quadrupole deformation can be generated by using a quadrupole force with the central field in the subspace spanned by a sequence of $\Delta j = 2$ orbits that come lowest by the spin-orbit splitting representing this relevant subspace a quasi-SU3. In the Cr region it happens something similar to what happens in the Island of inversion ³²Mg.

RDDS method for MNT

⁴⁸Ca onto ²⁰⁸Pb at 310 MeV

RDDS spectra of the 2⁺ and 11/2⁻ in ⁵⁰Ca and ⁵¹Sc (mass gate in PRISMA)

A. Gadea et al., Acta Phys. Pol. B 38 1311 (2007)D. Mengoni et al., Eur. Phys. J. A42 387 (2009).J.J.V.D et al., Phys. Rev. Lett. 102 242502 (2009).

Beam time request

•Beam: ⁶⁴Ni at 410 MeV 5pnA – Plunger: 1mg/cm² Ta backing 1mg/cm² ²³⁸U + degrader ~3 mg/cm² Mg

•Five distances:

•Lifetimes range from ~0.5 ps up to ~8 ps

•Distances range (β≈10%) ~20 µm up to ~200 µm

•Around 150-200 counts in the weakest populated transitions for each distance

•58Cr 6+ and 60Cr 2+, 4+

•This reaction with the present setup allows to measure the two nuclei contemporarily \rightarrow Complementary to RIB studies with dedicated beam time for each nucleus of interest.

•Strong link and feedback with parallel theoretical investigations

We request a total of 6 days of beam time.

E(5) symmetry in the ⁵⁸Cr isotope

The R(4/2) of 58 Cr has exactly the value predicted for E(5) critical point

Excitation energies in ⁵⁸Cr are in very good agreement to the predictions of the E(5) symmetry

S. Zhu et al., PRC 74, 064315 (2006). N. Marginean et al., PLB (2006) 696

Summary of the scientific motivation

- Measurement of B(E2; $2^+ \rightarrow 0^+$) and B(E2; $4^+ \rightarrow 2^+$) in ⁶⁰Cr
 - To understand the development of deformation in neutron-rich Cr isotopes when going towards N=40
 - − Relevance of the $d_{5/2}$ orbital in building up the deformation in the region → New Island of Inversion at N=40
- Measurement of B(E2; $2^+ \rightarrow 0^+$), B(E2; $4^+ \rightarrow 2^+$), B(E2; $6^+ \rightarrow 4^+$) in ⁵⁸Cr
 - Is the yrast structure of ⁵⁸Cr compatible with the E(5) critical point? → Future experiment at GSI with AGATA+PRESPEC to look at non-yrast states
 - Unique physical system to explore the bridge between very different model approaches.

Experimental details

⁶⁴Ni on ²³⁸U at 400 MeV CLARA+ PRISMA

Experimental details

⁵⁸Cr and ⁶⁰Cr

On the bases of a previous experiment, we habe performed the beam time estimation. The same reaction was used $(400\mu g/cm^{2} \, {}^{238}U - 3\% CLARA efficiency}) \rightarrow Optimized beam time request.$

N. Marginean et al., PLB (2006) 696

AGATA Demonstrator & PRISMA

RDDS method for deep inelastic reactions

Deformation evolution towards N=40

N=40 subshell gap in ⁶⁸Ni, disappears when protons are removed from the $f_{7/2} \rightarrow$ Monopole part of the tensor interaction

S. Lunardi et al., Phys. Rev. C **76**, 034303 (2007). S. Lenzi et al., LNL Annual Report (2008). P. Adrich et al. Phys. Rev. C **77**, 054306 (2008). O. Sorlin et al., Eur. Phys. J A **16** 55 (2003).

N. Aoi, et al., PRL 102, 012502 (2009) (p,p') reaction with radioactive beams

N=40 subshell gap

Monopole effect of the tensor interaction in shell evolution

T. Otsuka et al., PRL95 232502 (2005)

- •Cr isotopes 4 holes in the $\pi f_{7/2}$
- •Atraction between the $f_{7/2}$ and $f_{5/2}$
- •Repulsion between the $f_{7/2}$ and $g_{9/2}$
- •Disappearance N=40 subshell gap
- •Role of the d_{5/2}?

Building up collectivity

Starting from the SU(3) model of Eliott where the classical case of ²⁰Ne is described in the full sd but could also be described within a quasi-SU3 by considering only the relevant $\Delta j = 2$ orbits d_{5/2} and the s_{1/2}.

RAPID COMMUNICATIONS

PHYSICAL REVIEW C

VOLUME 52, NUMBER 4

OCTOBER 1995

Spherical shell model description of rotational motion

A. P. Zuker, ¹ J. Retamosa, ² A. Poves, ² and E. Caurier¹

¹Physique Théorique, Bâtiment 40/1 CRN, Institut National de Physique Nucléaire et des Particles-CNRS/Université Louis Pasteur, Boîte Postale 28, F-67037 Strasbourg Cedex 2, France ²Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

(Received 13 July 1994)

Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another—or the same—major shell, behave systematically as backbending rotors. The dominance of the $q \cdot q$ component of the interaction is related to an approximate "quasi-SU3" symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a "pseudo-SU3" coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed B(E2) rates at the beginning of the region.

Quadrupole deformation can be generated by using a quadrupole force with the central field in the subspace spanned by a sequence of $\Delta j = 2$ orbits that come lowest by the spin-orbit splitting representing this relevant subspace a quasi-SU3. In the Cr region it happens something similar to what happens in the Island of inversion ³²Mg.

B(E2) known in ⁵⁸Cr

GSI - FRS + RISING Coulomb excitation at relativistic energies

Table 2

Number of projectiles identified as Cr before and after the target (N_{pro}) , number of counts in the 2^+_1 peaks (N_{γ}) , γ -ray intensities (I_{γ}) , $B(\text{E2}; 2^+_1 \rightarrow 0^+)$ values and gamma-ray energies (E_{γ}) , for $^{54,56,58}\text{Cr}$

Isotope	⁵⁴ Cr	⁵⁶ Cr	⁵⁸ Cr
N _{DIO} [10 ⁶]	37	18	12
Ny	501(64)	126(44)	148(43)
I_{γ} [10 ²]	211(27)	61(20)	73(19)
B(E2) [W.u.]	14.6(0.6) ^a	8.7(3.0)	14.8(4.2)
$E(2_{1}^{+})$ [keV]	835 ^a	1007 ^a	880 ^b
		-	7.8ps

A. Bürger et al. / Physics Letters B 622 (2005) 29.

Collectivity at N≤40, Z<28

H. Oba and M. Matsuo, Prog. Theo. Phys. 120, 143 2008

Deep inelastic reactions

z	62Zn	63Zn	64Zn	65Zn	66Zn	67Zn	68Zn	69Zn -	⁷⁰ Zr	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77 Zn	78Zn
	61Cu	62Cu	63Cu	64Cu	65Cu	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu
28	GONi	61Ni	62Ni	63Ni	⁶⁴ Ni	65Ni	66Ni	67Ni	68 <mark>101</mark> 7		70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni
	59Co	60Co	61Co	62Co	63Co	64Co	65Co	66Co	67Co	¥8C0	69Co	70Co	71Co	72Co	73Co	74Co	75Co
26	58Fe	59Fe	60Fe	61Fe		63Fe 7	64Fe	65Fe	⁶⁶ Fe	67Fe	⁶⁸ Fe	69Fe	70Fe	71Fe	72Fe		
	57Mn	58Mn	59Mn	60Mn	61M	62Mn	63Mn	64Mn	65Mn	66Mn	67Mn		69Mn				
24	56Cr	57Cr	⁵⁸ Cr	59Cr	⁶⁰ Cr	61Cr	⁶² Cr	63Cr	⁶⁴ Cr	65Cr	66Cr	67Cr					
	557	567	57V	587	59V	607	61V	62V	637	64₹	657						
22	54Ti	55Ti	56Ti	57Ti	58Ti	59Ti	GOTI	61Ti	62Ti	63Ti							
	32		34		36		38		40		42		44		46		N