Two observables for indirect DM searches

> Fabío Iocco fabio.iocco .AT. iap.fr Marie Curie fellow at Institut d'Astrophysique de Paris

Chapter I:

Annihilating DM and CMB

Fabio Iocco MC fellow at IAP

LAPTH-28/10/2010 Annecy-le-Vieux

Isotropically averaged cosmological DM annihilation

Smooth component

$$A^{
m sm}(z) = rac{\langle \sigma v
angle}{2 \, m_\chi^2}
ho_{
m DM,0}^2 (1+z)^6$$

Structure component

$$A^{\rm struct}(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \int \int dM \frac{dn}{dM} (z, M) (1+z)^3 (4\pi r^2 \rho_i^2(r, M(z))) dr$$

Structure formation history (Press-Schechter / Sheth-Tormen) DM density halo profile Burkert / Einasto / NFW

$$A(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \rho_{\mathrm{DM},0}^2 (1+z)^6 \left(1 + \mathcal{B}_{\mathrm{M}}(z)\right)$$

Only after structure formation $z \le \approx 100$

The <u>IGM</u> opacity (absorbing the energy – or not)

Photoionization, IC scattering, pair production (on CMB γ and matter), γγ scattering "Opacity window" of the Universe

absorption is DM model-dependent: type of secondaries is important!

[Slatyer et al. `09]

Electron optical depth τ

$$\tau = -\int n_e(z)\,\sigma_{\rm T}\,\frac{dt}{dz}$$

Integrated quantity

$$\tau = n_{\rm A} \,\sigma_{\rm T} \, \left[-\frac{0.88}{0.82} \int_0^3 dz \frac{dt}{dz} (1+z)^3 - \int_3^6 dz \frac{dt}{dz} (1+z)^3 \right] +$$
Known contribution 0.038

Sources z > 6: known unknowns

$$\underbrace{n_{\mathrm{A}} \, \sigma_{\mathrm{T}} \left[-\int_{6}^{\infty} dz \frac{dt}{dz} (1+z)^{3} x_{\mathrm{ion}}(z) \right]}_{\delta au}$$

τ constraints (DM annihilations <u>can</u> overproduce free e⁻)

Transparency of the Universe & structure formation

HE shower gets efficiently absorbed only at high z

Structure formation takes place in a late Universe (z < 60)

[Cirelli, FI, Panci `09]

Observing Reionization: electrons and CMB

Self-annihilating DM: on-the-spot approximation

Annihilation rate

$$rac{dI}{dt}(z)=n_{DM}^2(z)\langle\sigma v
angle m_\chi c^2$$

Energy deposition rate

 $\frac{dE}{dt}(z) = \rho_c^2 c^2 \Omega_{DM}^2 (1+z)^6 f \frac{\langle \sigma v \rangle}{m_{\chi}}$

The only DM parameter is

$$f\frac{<\sigma v>}{m_{\chi}}\equiv p_{ann}$$

more about "f" later

Main effect of injected energy: heating and ionization of the IGM

[Galli, FI, Bertone, Melchiorri `09]

Self-annihilating DM and the CMB

DM annihilation indirect, SZ by "additional" e⁻

z>1000 there are many eenergy injection is small no effects on CMB blackbody

Modifying TT, TE, EE with additional e⁻ (by DM annih)

Constraining DM with CMB

Evaluating "f"

All channels, all secondaries, redshift dependence

Branching ratio of DM annihilation essential for determining absorption

Little reminder: Pamela is leptophilic (from greek: "*likes it thin*")

Constraining DM with CMB

Concluding

Cosmological DM annihilation provides strong constraints on <sv>

Annihilation "signal" comes from smooth DM density field (can get rid of structure formation uncertainties!)

Self-annihilating DM can inject enough energy (free electrons) to sizably modify the CMB spectra

Ideal to test Sommerfeld enhancement

Own it now: your kids will love it!

Chapter II:

Thermal neutrinos from the Sun

Fabio Iocco MC fellow at IAP

LAPTH-28/10/2010 Annecy-le-Vieux

Scattering and capture

Halo WIMPs are captured

Captured WIMPs accumulate inside the star, thermalize

by scattering off the gas of the star

and "sink" to the center

DM Capture (for the "vanilla" WIMP)

$$\dot{N_{\chi}} = C - 2AN_{\chi}^2 - EN_{\chi}$$

Capture rate C

 $C \propto \frac{\sigma_0 \rho}{\bar{v}} \frac{M_*^2}{R_*} \frac{1}{m_{\chi}}$

WIMPs thermally relaxed within the star: Distribution

$$n_{\chi}(R) = n_{\chi}^c \exp(-R^2/R_{\chi}^2)$$

WIMP resilience volume ≈ point-source R_x=10⁹cm<<R_c

Equilibrium timescales are short

$$\tau_{\rm th} = \frac{4\pi}{3\sqrt{2G}} \frac{m_{\chi}}{\sigma_0} \frac{R_*^{7/2}}{M_*^{3/2}} \quad \tau_{\chi} = \left(\frac{\pi^{3/2}R_{\chi}^3}{C\langle\sigma v\rangle}\right)^{1/2}$$

"Dark Luminosity" inside the star

$$L_{DM} = 4\pi \langle \sigma v \rangle m_{\chi} \int n_{\chi}^2(r) r^2 dr$$

At equilibrium
 $L_{DM} = C m_{\chi}$

Energy transport effects: scatter of orbiting DM

 \mathbf{X}

$$\frac{1}{l_{\chi}(r)} = \sum_{i} \sigma_{i} X_{i}(r) \frac{\rho(r)}{m_{i}}$$

Seminal literature by: Gould, Griest, Press, Raffelt,Salati, Seckel, Spergel ...

Where does this take place (efficiently)?

Galactic Center is dense in DM

Scattering and transport

WIMPs and the SUN: energy transport

Asymmetric DM and the SUN: energy transport effects

asymmetric DM can modify solar structure at > % level in the core

[Taoso, FI et al. `10]

NA DM and Sun: modifying thermal neutrinos

 $^8B~\nu$ produced innermost than $^7Be~\nu$

modified by asymmetric DM

[Taoso, FI et al. `10]

Exclusion power using ⁸B neutrinos

Benchmark v flux [SNO] $\phi_B = 5.046 \times 10^6 \text{ cm}^2 \text{s}^{-1}$ $\frac{+0.159}{-0.152}(\text{stat})^{+0.107}_{-0.123}(\text{syst})$ $\Delta \phi_B = 5\%$ $\Delta \phi_B = 25\%$

See also [Cumberbatch et al. `10] (helioseismology, weaker diagnostic)

Self-Interacting DM in the Sun

$$\dot{N}_{\chi} = C + C_{\chi\chi} N_{\chi}$$

Capture of SI-DM Limited by geometrical cross section of DM region (optical limit) πr_{χ}^2

> No sizable effect on solar composition disagreement with [Frandsen & Sarkar `10]

[Taoso, FI, et al. `10]

Conclusions

- Annihilating DM can <u>not</u> modify the structure of the Sun
- <u>Non</u> annihilating DM <u>can</u> modify the structure of the Sun
- Non annihilating DM induces variation on ⁸B neutrino flux

Competitive constraints on SD cross section (low masses)

More to be addressesd with other type of stars in other environs