

Tier2s connectivity requirements

22 Novembre 2010

S. Jézéquel (LAPP-ATLAS)

LCG-France

- MONARC model
- Current usage of disk and network
- Foreseen changes in data organisation and network connection

Year 2000s : Monarc model

History

- network expected to be limited : Monarc model
 - Manage replication centrally from pre-defined algorithm
- matching bandwidth availability
 - Avoid chaotic transfers as much as possible
 - Jobs go to data
 - Only ATLAS implemented it completly
 - LHCb : No T1 \rightarrow T2 for analysis
 - Other implementations
 - ALICE : Distant access by analysis jobs if needed
 - CMS : Data spread over T1s and T2 connects to all T1s
 - Number of replicas : Expected file popularity
 - Position of replicas : Close to users to get back output
 LCG-France
 3
 22 November 2010

Transfer path

- Chosen depending on the monitored transfer rate
 - Not based on some input from network tables
 - only sensitive to network saturation and single file transfer rate
 - No preference within Europe if effective bandwith is
- CMS:
 - T1-T1 + specific T1-T2
 - Channels are constantly commissioned
- ATLAS
 - \checkmark T1-T1 + T1-T2 within same cloud and T2 \rightarrow T1 outside cloud (user files)
 - ◆ T2-T2 path : T2(cloud a) \rightarrow T1 (cloud b) \rightarrow T2 (cloud b)
 - Path could be different based on file size
 - 100 MB : Transfer limited by srm negociation \rightarrow direct T2-T2

◆ > 1 GB : Transfer is limited by transfer speed \rightarrow Compute fastest path

LCG-France

Network usage

- Network is the most powerfull and reliable part of Grid
 - \rightarrow Increased the number of replicas for redundancy between sites
 - \rightarrow Transfer rate higher than expected

Data effective usage

- Strong pressure from users to maximise the possibilities
 - Constraint : Jobs go to where data are prepositioned
 - Exception : ALICE with xrootd : Possibility to read distant data
 - Maximise replicas a priori \rightarrow Maximise the possible CPUs
 - Was applied and successfull in 2009 and 2010
 - ♦ But :
 - Effective usage of replicated data is small
 - ◆ Lifetime of data is O(month) → Permanent replication activity
 - \rightarrow Go to a push/pull model
 - Data are pushed to places when it is usefull
 - Data are pulled for usage on demand
 - \rightarrow Request good reactivity for transfers

T2↔T1/T2 transfers : Current usage

- Distribute data between sites hosting same physics groups
 - Huge amount of data to replicate
- Collect data processed by physics groups \rightarrow local processing
 - Can be huge depending on T2 size at destination
- Collect data produced by users \rightarrow local processing
 - Can be huge depending on T2 size at destination

Request for T2 connection

Tier-2 Analysis Bandwidth Requirements

- Based on CPU capacity
 - A typical Tier-2 site with 1000 cores, a typical rate of 25 Hz for AOD analysis, ...
- Based on cache turnover after re-processing
 - A typical 1 week turnover of a typical 400 TB cache, ...
- Based on analysis efficiency and user expectations
 - A typical 1 day latency for a 25 TB analysis sample,

Tier-2 Connectivity Categories

LCG-France

1 Gb/s

5 Gb/s

3 Gb/s

Transfer trafic : Future

- ◆ T1/T0 ↔ T1 transfers
 - Trafic not expected to increase significantly
 - Pic trafic scales with data reprocessing speed (nb CPU at T1)
- ◆ T1/T2 ↔ T2 will increase
 - \rightarrow Generic network will not be sufficient

Conclusion

- \checkmark Network is reliable \rightarrow more load on this component
- ◆ T2 : Data preplacement → Popularity policy
 - \rightarrow More transfers of temporary files
- Transfer to T2s will increase with time
 - Depend on expected activity (scales with site size)
- \rightarrow T2 classification for bandwidth connection

