

Detector Group Status Report

O. DORVAUX IPHC/Université de Strasbourg

12-14 January 2011

UNIVERSITÉ DE STRASBOURG

Outline

- Physics cases requirements and challenges to be solved
- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - Sources energy and timing measurements
 - In-beam measurements
- Summary and Perspectives

PARIS Specifications from Physics cases (courtesy of Ch. Schmitt - York 2008)

Physics cases
 requirements and

0	challenges to be solved Experimental results obtained	Experiment type	Energy range	Energy resolution	Timing resolution	ΔM	Counting rate
	for LaBr3:Ce and phoswiches detectors	0< β<10%	[0.05 , 40] MeV	3-5%	< 1ns	4	50 kHz
	and timing measurement	20< β<60%	[1,4] MeV	3-4%	<< 1 ns	4	50 kHz

Summary and

Perspectives

Challenges to face

Physics cases
 requirements and
 challenges to be
 solved

 Experimental results obtained for LaBr3:Ce and phoswiches detectors

> sources energy and timing measurements

In-beam measurements

Summary and Perspectives Very large energy range (~3 orders of magnitude) and high efficiency

 low gain PM tube
 good linearity
 long LaBr3:Ce or phoswiches detectors

 Good energy resolution (at low energy < 2MeV) LaBr3:Ce detectors

 Good timing fast signal => only LaBr3:Ce signals Analog CFD or high frequency (1 GHz)

Multiplicity => granularity => high number of channels

High counting rate => digital electronics

What we had already learnt

Physics cases
 requirements and
 challenges to be
 solved

 Experimental results obtained for LaBr3:Ce and phoswiches detectors

> sources energy and timing measurements

In-beam measuremer

Summary and Perspectives

- APD are not a solution for LaBr3 and/or phoswiches
- Single LaBr₃(Ce) detectors gives good results and fullfils the PARIS specifications in terms of energy resolution, timing resolution, efficiency, ...
- Large LaBr₃(Ce) detectors are very expensive
- Same results for cubic and cylindrical shape for LaBr₃(Ce) detectors
- Phoswich concept seems to work

Questions we had to answer

- Which second shell for a phoswich : CsI(Na) or NaI(Tl) ?
- Results for these two phoswiches in terms of :
 - energy resolution
 - timing resolution
- Which optimal PM tube ?
- Which electronics ?

Material: the detectors

		Detector type	1 st shell	2 nd shell
	challenges to be solved	B380_small	1"x1"x2" LaBr3(Ce)	
Exp rest for pho det	Experimental results obtained	PW-CsI	1"x1"x2" LaBr3(Ce)	1"x1"x6" CsI(Na)
	or LaBr3:Ce and phoswiches letectors	PW-NaI	1"x1"x2" LaBr3(Ce)	1"x1"x6" NaI(Tl)
	D In-beam and	B380_big	2"x2"x4" LaBr3(Ce)	

D Efficiency

PARIS Workshop 2011 : Detector Group Status Report

Material we used : the PM tubes

u	requirements and challenges to be solved Experimental results obtained for LaBr3:Ce and phoswiches detectors	Reference	Shape	size	Gain	Transit time
র্ত		<u>R6236-100</u>	square	2''	2,7.10 ⁵	6 ns
		<u>R7723-100</u>	cylindrical	2''	10⁴-2.10 ⁶	1,7 ns
		<u>R5505-70</u>	cylindrical	1"	1.8.10⁴ - 5.10 ⁵	1,5 ns
	sources energy and timing	<u>XP2020Q</u>	cylindrical	2''	3.107	1,6 ns

- **In-beam**
- Summary and Perspectives

Mechanical improvements for a better optical coupling HV dividers from Hamamatsu and home made (anode and 2/3 last dynode stages)

How we proceed

Experimental Ø results obtained for LaBr3:Ce and phoswiches detectors

> Ø and timing

O. Dorvaux

QFast vs Charge

Using standard sources : PM tubes comparison (courtesy of D. Lebhertz)

- Physics cases requirements and challenges to be solved
- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - sources energy and timing measurements
 - In-beam measuremen
- Summary and Perspectives

PW-NaI + R6236-100 @ 1000V

PW-NaI + R6236-100 @ 1500V

- Physics cases
 requirements and
 challenges to be
 solved
- Experimental
 results obtained
 for LaBr3:Ce and
 phoswiches
 detectors
 - ☑ sources energy and timing measurements
 - In-beam measurement
- Summary and Demonstration

PARIS Workshop 2011 : Detector Group Status Report

10

PW-NaI + R6236-100

- Physics cases
 requirements and
 challenges to be
 solved
- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - ✓ sources energy and timing measurements
 - In-beam measurement
- □ Summary and

O. Dorvaux

Perspectives

Using standard sources : timing measurements (courtesy of M. Torres)

Intrinsic timing resolution using ORTEC 583 + TAC + ADC

 Physics cases requirements and challenges to be solved

 Experimental results obtained for LaBr3:Ce and phoswiches detectors

> ☑ sources energy and timing measurements

	Output	Source	B380_1	PW_NaI	PW_CsI
ed nd	Anode	²² Na	377 ps	679 ps	801 ps
rov		⁶⁰ Co	188 ps	468 ps	519 ps
nts	Dynode	²² Na	259 ps	672 ps	831 ps

D In-beam

measurements

Summary and

Perspectives

O. Dorvaux

Reaction : ²⁷Al(p@1MeV,γ)²⁸Si

- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - sources energy and timing measurements

☑ In-beam measurements

Summary and

Perspectives

O. Dorvaux

Tentative of add-back (D. Lebhertz)

- Physics cases requirements and challenges to be solved
- Experimental
 results obtained
 for LaBr3:Ce and
 phoswiches
 detectors
 - sources energy and timing measurements
 - ☑ In-beam measurements
- Summary and Perspectives

O. Dorvaux

Tentative of add-back (D. Lebhertz)

- Physics cases
 requirements and
 challenges to be
 solved
- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - sources energy and timing measurements

☑ In-beam measurements

Summary and

Perspectives

Reaction : ²⁷Al(p@1MeV,γ)²⁸Si

solved ☑ Experimental results obtained	B380_1	R5505-70	not linear
for LaBr3:Ce and phoswiches detectors	PW_NaI	R7723-100	linear
sources energy and timing measurements	Pw_CsI	R6236-100	not linear
In-beam measurements			
Summary and			

Perspectives

Best Results obtained

 Physics cases requirements and challenges to be solved

 Experimental results obtained fo LaBr3:Ce and phoswiches detectors

- In-beam and with sources energy measurement
- With source timing measurement
- **D** Efficiency

Summary and Perspectives

	B380_2	PW_Csl		PW_Nal	
		LaBr3	Csl	LaBr3	Nal
Energy FWHM (@662 keV)	3.2 %	4.2 %	12.7 %	3.8 %	8.2%
Timing FWHM (ns)	270	800		680	
Linearity	Yes (sources)	Yes (<1.3 MeV)		Yes (< 12 MeV)	

The adopted strategy to fullfil the PARIS specifications is based on Cubic PW-NaI : 2"x2"x2" LaBr₃(Ce) + 2"x2"x6" NaI(Tl) coupled with R7723-100 Hamamatsu PM tube

Results obtained @ Mumbai (courtesy of I. Mazumdar)

Energy resolution for single crystals

NaI(Tl) : R=7-7.5 % @ 662 keV

LaBr₃(Ce) : R=3% @ 662 keV

Results obtained @ Mumbai (courtesy of I. Mazumdar)

Comparison simulated and measured ¹³⁷Cs and ⁶⁰Co calibrated source data

	٤ _T	otal	٤ _{peak}		
Distance (cm)	GEANT4	Ехр	GEANT4	Exp	
15	0.105 (0.012)	0.114 (0.005)	0.030 (0.004)	0.027 (0.001)	
25	0.041 (0.003)	0.044 (0.002)	0.011 (0.001)	0.010 (0.001)	

Summary

PARIS Workshop 2011 : Detector Group Status Report

10⁴

Results obtained @ Mumbai (courtesy of I. Mazumdar)

Time of flight $n - \gamma$ discrimination

Results obtained @ Mumbai (courtesy of I. Mazumdar)

Results with a PW-NaI

Mazumdar, Anil Kumar, Gothe, Manchanda, 2010

Results obtained @ Mumbai (courtesy of I. Mazumdar)

Results with a PW-NaI

Mazumdar, Anil Kumar, Gothe, Manchanda, 2010

- Physics cases requirements and challenges to be solved
- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - In-beam and with sources energy measurements
 - With sources timing measurement
 - Efficiency
- ✓ Summary and Perspectives

Main goal : Prototype = cluster of 9 PW-NaI detectors at the end of the year 2011

Foreseen schedule

- ▶ 2 PW-NaI already ordered @ Saint-Gobain by IPHC and IPNO
- 3 PW-NaI will be ordered very soon by Krakow (FP7)
- 4 PW-NaI will be ordered this year by Mumbai

But

 Orders are under conditions of the success of the first one (answer ~May 2011)

equipped with Hamamatsu R7723-100 PM tubes (bought by York and / or GSI) coupled with electronics (and DAQ) system : CAEN V1751 digitizer / TNT2-like / NUMEXO ? / ...

Physics cases requirements and challenges to be solved

 Experimental results obtained fo LaBr3:Ce and phoswiches detectors

> In-beam and with sources energy measurements

 With sources timing measurements

D Efficiency

✓ Summary and Perspectives While highly precised ISEG HV + modified VD

- handle them and transport them carefully ...
- assembly all these 9 single PW detectors together (see talk of J. Pouthas/S. Courtin)
- find a reliable optical coupling
- Take care at the shift from PM+Voltage Divider

- Physics cases requirements and challenges to be solved
- Experimental results obtained fo LaBr3:Ce and phoswiches detectors
 - In-beam and with sources energy measurements
 - With sources timing measurement
 - **D** Efficiency
- ✓ Summary and Perspectives

perform measurements with standard sources and high energy γ-rays to test the add-back algorithm and to compare with simulations (which efficiency ?)

- test the cluster under neutron emission
- test the cluster under high counting rate and see the pileup effect
- tests other PM tubes : D. Jenkins is in contact with Electron tube company
- High voltage divider development
- New material : <u>http://spie.org/documents/Newsroom/Imported/</u> 003196/003196_10.pdf ?!

- Physics cases requirements and challenges to be solved
- Experimental results obtained for LaBr3:Ce and phoswiches detectors
 - In-beam and with sources energy measurements

With sources timing measurement

D Efficiency

✓ Summary and Perspectives Thanks to all Detector WG members and Special thanks to : Th. Adam, A. Chietera, J. Devin, Ch. Finck, J. Hosselet, D. Juliani, D. Lebhertz, R. Lozeva, Ch. Maazouzi, I. Matea, C. Mathieu, Ph. Peaupardin, O. Roberts, M. Rousseau, M. Torres

PARIS Workshop 2011 : Detector Group Status Report

27