Piotr Bednarczyk

Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

Electronics for PARIS

Searching for optimum solution

Meetings:

- York, May 2008 (kick of meeting)
- Debrecen, Apr 2009 (dedicated digital card)
- Krakow, April 8, 2009 (integration with GANIL-NUMEXO2)
- Krakow, Oct. 2009(existing solutions -Strasbourg TNT2)
- Valencia, Nov. 2010 (synergy with NEDA)

PARIS design goals:

- Design and build high efficiency detector consisting of 2 shells for medium resolution spectroscopy and calorimetry of γ -rays in large energy range.
- Inner sphere, highly granular, will be made of new crystals LaBr₃(Ce), rather short (up to 2-4 inches). The readout might be performed with PMTs or APDs.
- Inner-sphere will be used as a multiplicity filter of high resolution, sumenergy detector (calorimeter) and detector for the gamma-transition up 10 MeV with medium energy resolution (better than 3%). It will serve also for fast timing application (Δt<1ns).</p>
- Outer sphere, with lower granularity but with high volume detectors, rather long(at least 5 inches), could be made from conventional crystals (BaF₂ or CsI), or using existing detectors (Chateau de Crystal or HECTOR). The outer-sphere will measure high-energy photons or serve as an active shield for the inner one.

Compatibility with other devices is key

+ NEDA, HYDE, RFD etc.....

Basic requirements for the PARIS electronics

- Serve 200-1000 detector channels (energy and time per channel)
- Deal with fast signals of LaBr₃: risetime <1ns, decaytime ~20 ns
- Stand rates up to 100 kHz per channel
- Perform pulse shape analysis-for neutron and gamma discrimination (?) and for disentanglement of overlapping signals from phoswitch detectors
- Keep time resolution better than 1 ns, for TOF purposes
- Measure energies up to ~50 MeV with 3% resolution.
- Trigger less readout with timestamping
- Provide gamma time and energy relative to an external signal

GAMMA-TELESCOPE

o I

•CsI(NaI) •(2"x6")

•PMT

•T1,T2

Phoswich tests in Strabourg

Possible solutions for the PARIS FE

- A hybrid consisted of analog and digital electronics for time and energy determination respectively
- Fully digital electronics with the fastest possible flash ADC (3-8Gsample, 8 bit ?)
- Milano solution: a card consisted of a first analog stage used to shape a LaBr₃ signal and a consecutive digital part (100MHz sampling frequency) that is used to extract both energy and time (<u>sub ns precision</u>)

Constrains due to the GANIL DAQ

- Compatibility with the GANIL timestamping system.
- Use of AGATA-like timestamps with GTS.
- If used with ancillary detectors as VAMOS a trigger from PARIS shall be generated.

Krakow-GANIL collaboration on a common digitizer for SPIRAL2

Krakow, April 8, 2009

Integration of the AGATA GTS functionality with the GANIL NUMEOX2 digitizer (VIRTEX)

Example of merging ancillaries to AGATA DAQ through AGATA VME ADAPTER

Block Diagram of NUMEXO2

