

ACTAR in PARIS

Present status of ACTAR and possibilities for ACTAR in PARIS

Geoff Grinyer grinyer@ganil.fr

January 12, 2011 PARIS Collaboration Meeting, Strasbourg

What is ACTAR?

- New ACtive TARget for SPIRAL2
 - Charge and time projection chamber
 - Gas volume acts as the reaction target
 - High efficiency
 - Low thresholds
 - Thick targets
 - Angular and spatial resolution
- Physics Cases
 - One and two nucleon transfer reactions
 - Resonant scattering
 - Inelastic scattering and giant resonances
 - Nuclear astrophysics
 - Exotic nuclear decay (2p, β3p, βαp, ...)

Why do we need ACTAR?

- Ion trajectories and energies in a gas
 - Unambiguous identification of rare events
 - Kinematic selectivity
- Target thickness
 - In 50 mm of D₂ gas (1 atm pressure)
 - 5.4x10²⁰ deuterons/cm²
 - In 500 ug/cm² CD₂ solid target
 - 3.8x10¹⁹ deuterons/cm²
- With high-efficiency
 - Focus on the most exotic nuclei and decays
 - Complete experiments with less beam time

*2p decay of ⁴⁵Fe

ACTAR Reach – SPIRAL2 Phase II Day 1

ACTAR for (d,p) Transfer Reactions

- A quantitative spectroscopic tool
 - Level energies
 - Cross sections and Q-values
 - Angular distributions (spin and parity)
 - Spectroscopic factors (neutron states)
- Characteristics of (d,p) @ 5 MeV/u
 - Proton kinematics
 - Backward angles in the laboratory
 - Low-energy (stopped in gas)
 - Need excellent energy resolution
 - Complement with γ-ray spectroscopy
 - Tag the final states

K.L.Jones, Nature. 99, 192501 (2007)

ACTAR Prototype

- 576 channel prototype
 - Pad pitch 2 x 2 mm²
 - Connections @ IPN Orsay (Jan 2011)
 - Source tests @ GANIL (Feb 2011)

- ACTAR
 - 27 cm cubic gas box
 - 25.6 x 25.6 cm² active pad plane
 - Pad pitch 2 x 2 mm²
 - 3 cm ø entrance window

- ACTAR
 - 27 cm cubic gas box
 - 25.6 x 25.6 cm² active pad plane
 - Pad pitch 2 x 2 mm²
 - 3 cm ø entrance window
- PARIS (2 x 2 x 4 inch)
 - 4 x 6 detectors downstream

- ACTAR
 - 27 cm cubic gas box
 - 25.6 x 25.6 cm² active pad plane
 - Pad pitch 2 x 2 mm²
 - 3 cm ø entrance window
- PARIS (2 x 2 x 4 inch)
 - 4 x 6 detectors downstream
 - 4 x 5 detector cluster each side

- ACTAR
 - 27 cm cubic gas box
 - 25.6 x 25.6 cm² active pad plane
 - Pad pitch 2 x 2 mm²
 - 3 cm ø entrance window
- PARIS (2 x 2 x 4 inch)
 - 4 x 6 detectors downstream
 - 4 x 5 detector cluster each side
 - 16 vertical detectors around box

- ACTAR
 - 27 cm cubic gas box
 - 25.6 x 25.6 cm² active pad plane
 - Pad pitch 2 x 2 mm²
 - 3 cm ø entrance window
- PARIS (2 x 2 x 4 inch)
 - 4 x 6 detectors downstream
 - 4 x 5 detector cluster each side
 - 16 vertical detectors around box
 - 5 x 5 detectors on top 1 for cathode

- ACTAR
 - 27 cm cubic gas box
 - 25.6 x 25.6 cm² active pad plane
 - Pad pitch 2 x 2 mm²
 - 3 cm ø entrance window
- PARIS (2 x 2 x 4 inch)
 - 4 x 6 detectors downstream
 - 4 x 5 detector cluster each side
 - 16 vertical detectors around box
 - 5 x 5 detectors on top 1 for cathode
 - 18 detectors upstream

- Characteristics
 - 122 PARIS detectors
 - Solid angle coverage ~ 76%
 - Photopeak efficiency @ 1 MeV ~ 24%
 - With NN addback ~ 30%
 - Detector to source ~ 13.5 cm

Feasibility and Rate Estimates

- ACTAR (D₂ gas at 1 atm)
 - 5.4x10²⁰ deuterons/cm²
 - Integrated cross section = 10 mb
 - Beam rate = 1000 pps
 - 20 counts per hour
- With PARIS
 - 10% population of an excited state
 - 25% photopeak efficiency for 1 MeV
 - 15 photopeaks per day

Other Considerations

- Trigger and timing
 - ACTAR upstream clean for (d,p)
 - Charge collection time ~ 10 μs
 - Prompt γ-rays delayed ~ 10 μs
 - Correlate data with time stamps
- Detector orientation
 - Phoswich response from the side?
- Decay of the beam (10³-10⁴ pps)
 - Stop inside ACTAR? (uncorrelated γ-rays)
 - Transport outside? (less solid angle)
- Natural ¹³⁸La decay, 1.4 MeV γ ray
 - ACTAR trigger uncorrelated

