EuroGDR SUSY 2007 November 12 - 14, 2007 Brussels, Belgium

A Dark Matter Tool on the Web

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

R. Lemrani, ILIAS-N3 Dark Matter Network / CEA Saclay

A word on ILIAS

Integrated Large Infrastructures for Astroparticle Science

European tool : I3 structure (Integrated Infrastructure Initiative) of FP6 Participants: 21 Contractors (70 laboratories), 14 European Countries Start date ; April 1st 2004 for 5 years Web site : *ilias.in2p3.fr*

Prime areas : Double Beta Decay, Dark Matter, Gravitational Waves

Infrastructures : - Deep Underground Laboratories - Gravitational Wave Interferometers

"... to produce a focused, coherent and integrated project to improve the existing infrastructures and their operation as well as to organise and structure the scientific community to prepare the best infrastructures for the future."

A word on ILIAS-N3 Dark Matter Network

Working groups

Web site : http://ilias-darkmatter.uni-tuebingen.de/

Web tool : Purpose

- Build a web interface for dark matter calculations : Expected spectra, limits extraction, ...
- Handling different detection techniques
- Handling different theoretical assumptions
- Cross check methods and codes
- Available to the whole dark matter community
- Allowing comparisons of experimental strategies using the same theoretical inputs and varying them

Homepage

Welcome to the

DArk Matter Network Exclusion Diagram

tool web page

dd spectra dd msugra dd limits dd scan ind fluxes dd/ind/msugra

dd scan: A msugra scan has been performed and a few variables have been tabulated, namely relic density, gaugino fraction, neutralino mass and Wimp-nucleon cross-sections. Cuts can be applied and corresponding scatter plots of surviving models presented.

Links	Updates	News	About	N3 ILIAS	Cross-checks					
LIAS related Links										
Dark Matter N3 network										
ILIAS wel	LIAS web site									
Database	on radiopuri	ty of mate	rials							
Database	on purification	on of mate	erials							
Externa	al Links									
Dark Matt	ter Limit Plot	Generato	<u>r</u>							
DarkSUS	<u>(</u>									
SPF by G.	Jungman									
SoftSUSY	- Micromega	is - Suspec	<u>:t</u>							
Upper Lin	nit Software	by Yellin								
Pole softw with syste	Pole software : Confidence intervals with systematic uncertainties									
Berkeley	Twiki - F.May	et's Portal	I							

example:

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

Atter/ R. Lemrani, ILIAS N3 / CEA Saclay EuroGDR SUSY 2007, November 12 - 14, 2007 Brussels, Belgium

Direct Search for WIMPs

WIMP nature : ie Neutralino

 σ = WIMP-nucleus cross section (point-like) m_{χ} = WIMP mass (μ = WIMP-nucleus reduced mass)

Galactic Halo

 ρ = density f(v) = velocity distribution

Detection rate :

J. D. Lewin and P. F. Smith, Astropart. Phys. 6, (1996)87

Ex.: Dependence on WIMP Mass^{dd spectra}

All parameters are entered in a form : The outputs are figures and tables

	Label	WIMP mass (GeV)	A of Target	Exposure (kg.days)	WIMP-nucleon cross section (pb)
1	10GeV	10	72.6	10	1E-7
2	20GeV	20	72.6	10	1E-7
3	50 GeV	50	72.6	10	1E-7
4	100GeV	1000	72.6	10	1E-7
next		1000	72.6	10	1E-7

[Energy (keV)	10GeV	20GeV	50GeV	100GeV		
	1	1.18E-01	6.97E-02	2.87E-02	1.42E-03		
	3	4.59E-02	5.18E-02	2.58E-02	1.35E-03		
	5	1.59E-02	3.77E-02	2.31E-02	1.28E-03		
I	7	5.09E-03	2.71E-02	2.06E-02	1.22E-03		
10GeV :	1.1	8E-01 4.59E-02 1.5	59E-02 5.09E-03 1	.50E-03 3.65E-04	3.55		
20GeV :	6.9	7E-02 5.18E-02 3.2	77E-02 2.71E-02 1	.93E-02 1.35E-02	9.40		
50GeV :	2.8	7E-02 2.58E-02 2.3	31E-02 2.06E-02 1	.84E-02 1.64E-02	1.46		
100GeV	1.4	3E-02 1.33E-02 1.2	24E-02 1.15E-02 1	.07E-02 9.89E-03	9.17		
ΙL	•-	0.002.00					
	21	0.00E+00	2.03E-03	9.01E-03	8.41E-04		
	23	0.00E+00	1.35E-03	7.95E-03	7.97E-04		
lī.	25	0.000.00	8.045.04	7.025.02	7.555.04		

Using ddmc tool (by J. Gascon, V. Sanglard and R.L.)

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/ R. Lemrani, ILIAS N3 / CEA Saclay

Ex. : Experimental parameters

Quenching, Resolution, Efficiency as a function of energy

with 2 types of inputs : - Binned entry - Parametrised function

For quenching Lindhard parametrisation (J. Lindhard et al., Mat. Fys. Medd. Dan. Vid. Selsk 33, (1963) 10)

dd spectra

Xenon vs Germanium

lower threshold for Xe
=> Sensitivity 5x higher for Xe

Example : Neutralino on ⁷³Ge

Inputs : SUSY parameters and experimental parameters

Outputs : Spin independent, Spin dependent cross sections, WIMP mass (using DarkSUSY) and experimental spectra

available targets for spin-dependent interactions ⁷³Ge, ²³Na, ²⁹Si, ²⁷Al, ¹²⁷I, ³He, ¹²⁹Xe, ¹³¹Xe, ³⁹K, p, n,

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

EuroGDR SUSY 2007, November 12 - 14, 2007 Brussels, Belgium

using :

dd msugra

Extraction of limits

When no signal is observed :

⇒ limit on the WIMP-nucleon cross-section as a function of the WIMP mass

- Feldman-Cousin : known background

The limit on the rate depends on the number of observed events and the number of expected background events. (see ie J. Conrad et al., Phys. Rev. D 67, (2003) 012002)

- Yellin : unknown background

The list of the energies of the observed events are entered. The method takes advantage of signal-unlikely events. (S. Yellin, Phys. Rev. D **66**, (2002) 032005)

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

Example : Experimental limits

LIMIT ON RATE

	Method	Observed events / Limit on rate	N_Background
1	2	29	28.6
next	2. Feldman-Cousin approach 🛟	29	28.6

I-1-a Quenching : Q = a Er^b (for b=0 I-2-a Resolution : FWMH = a + b E^

	а	b
1	0.36	0
next	0.36	0

	а	b
1	0	4.23
next	0	4.23

10 ⁻⁷					
10⁻⁶					
10 ⁻⁵			— ZE	II	

	efficiency in bins
1	8 5 6 7 8 9 10 12 14 20 0.17 0.235 0.285 0.325 0.35 0.3775 0.3875 0.39
next	8 5 6 7 8 9 10 12 14 20 0.17 0.235 0.285 0.325 0.35 0.3775 0.3

Approximate treatment with respect to full experimental analysis ie multidimentional efficiencies

40.42	5.551-07
49.77	5.79E-07
53.37	5.67E-07
57.22	5.61E-07
61.36	5.59E-07
65.79	5.62E-07
70.55	5.68E-07
75.65	5.77E-07
81.11	5.91E-07
86.97	6.07E-07
93.26	6.26E-07

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

R. Lemrani, ILIAS N3 / CEA Saclay

dd limits

MSUGRA scan

SI WIMP-p cross section

SuSy scan (isasugra) following : H. Baer et al JCAP09(2003)007

SCAN:

m₀ 100-5100 GeV 500 bins (10GeV bins) m_{1/2} 100-2100 GeV 200 bins (10GeV bins) μ + -

dd scan

- $\begin{array}{ccc} tan(\beta) & 10, 20, 30, 40, 50, 55 (+) \\ A_0 & 0 \end{array}$
 - => 1.1 10⁶ models

VARIABLES:

- relic density
- gaugino fraction
- neutralino mass
- cross-sections SI WIMP-p SI WIMP-n
 - SD WIMP-p SD WIMP-n

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/ R. Lemrani, ILIAS N3 / CEA Saclay

Scan for direct searches

INPUTS:

Define a set of cuts on available variables

and/or define a cut on exclusion curve (can be copy past from dd limits)

Choose 2 variables for bi-plots

Define a set of cuts

Cut 1	relic den	sity 💌	F	lange :		0	.13	remove
New cut :	χ mass [C	GeV] 🔄	Γ Γ	Cange :	50	[validate
Exclusion	curve : S	Ι σ W-p [pl	o] 💌	Numb	er of ma	isses :	100	(max. 100 mass
				masse	s:		10.00 1	0.72 11.50 12.33
				cross-	sections	:	2.86E-0	07 1.11E-07 5.33I
							can be o	copy/paste from a
Define	plot							
X axis X	mass [GeV] 🗾						
Y axis G	augino Fra	ction 💌						
And plot als	so fraction	of survivi	ng m	odels wi	th respec	et to : [All mod	els 💌
clear all								

dd scan

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/ R. Lemrani, ILIAS N3 / CEA Saclay EuroGDR SUSY 2007, November 12 - 14, 2007 Brussels, Belgium

Click to run

Example : Relic density

Cut on relic density < 0.13

cross-section SI W-proton vs Neutralino mass

dd scan

Example : exclusion curve

Cut relic relic density < 0.13 And on exclusion curve

Fraction of surviving models

dd scan

Surviving models

dd scan

Cut relic relic density < 0.13 and exclusion curve

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/ EuroGDR SUSY 2007, November 12 - 14, 2007 Brussels, Belgium

Indirect Searches : fluxes

Fluxes vs energy for chosen msugra model

Example for different halo models : isothermal , navarro-franck-white, moore, burkert, adiabatic

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

atter/ R. Lemrani, ILIAS N3 / CEA Saclay EuroGDR SUSY 2007, November 12 - 14, 2007 Brussels, Belgium

ind fluxes

Indirect Searches : fluxes

Integrated and differential fluxes for chosen energy and msugra model

gammas from halo in a chosen direction Antiprotons, antideuterons, positrons

	isothermal	NFW	burkert	adiabatic		•	ſ	11		
X mass [GeV]	242.84	242.84	242.84	242.84	Neutrinos (muons) from earth,					
Gaugino Fraction	0.99	0.99	0.99	0.99	Sun hala	-				
Relic Density	0.093	0.093	0.093	0.093	Sun, naio					
$J(\Psi, \Delta \Omega)$ halo factor	30.4	1214.5	7.8	154890.7						
PHOTONS					NEUTRINOS FROM EARTH					
dy Y flux [cm ⁻² s ⁻¹ GeV ⁻¹]	3.56E-14	1.42E-12	9.20E-15	1.82E-10	f _E V flux [km ⁻² yτ ⁻¹]	1.26E-01	1.26E-01	1.61E-01	2.07E-01	
f v Y flux [cm ⁻² s ⁻¹]	6.77E-14	2.31E-12	1.49E-14	2.94E-10	f _E V to μ [km ⁻³ yτ ⁻¹]	1.17E-09	1.17E-09	1.49E-09	1.92E-09	
V flux from V V [cm ⁻² s ⁻¹]	4.93E-16	1.97E-14	1.27E-16	2.51E-12	f _E μ flux [km ⁻² yr ⁻¹]	1.92E-10	1.92E-10	2.46E-10	3.16E-10	
Y flux from Y Z [cm ⁻² s ⁻¹]	8.09E-17	5.24E-15	2.09E-17	4.15E-15	d _E V flux [km ⁻² yr ⁻¹ GeV ⁻¹]	3.02E-09	3.02E-09	3.87E-09	4.97E-09	
$d_E \Upsilon \times [GeV^{-1}]$	7.59E+01	7.59E+01	7.39E+01	7.39E+01	$d_E V$ to μ [km ⁻³ yr ⁻¹ GeV ⁻¹ degree ⁻¹]	4.75E-12	4.73E-12	6.05E-12	7.79E-12	
∫ _E Y×	1.20E+02	1.20E+02	1.20E+02	1.20E+02	d _E μ flux [km ⁻² yτ ⁻¹ GeV ⁻¹]	3.53E-14	3.53E-14	4.51E-14	5.80E-14	
Y s from Y Y	1.02E+00	1.02E+00	1.02E+00	1.02E+00	NEUTRINOS FROM SUN					
$\gamma \times \text{from } \gamma Z$	1,68E-01	1.68E-01	1.68E-01	1.68E-01	fr: V flux [km ⁻² yr ⁻¹]	1.01E+07	1.01E+07	1.10E+07	1.72E+07	
	ANTIPRO	TONS			f _E V to μ [km ⁻³ yτ ⁻¹]	6.78E-02	6.78E-02	7.36E-02	1.15E-01	
p flux [GeV-1 cm-2 s-1 sr-1]	6.77E-11	7.458-11	4.82E-11	6.57E-10	f ₂ μ flux [km ⁻² yτ ⁻¹]	9.56E-05	9.56E-03	1.04E-02	1.62E-02	
	ANTIDEUT	RONS			d _E V flux [km ⁻² yτ ⁻¹ GeV ⁻¹]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
					d _E V to μ [km ⁻³ yτ ⁻¹ GeV ⁻¹ degree ⁻¹]	3.54E-04	3.54E-04	3.84E-04	5.99E-04	
D flux [GeV-1 cm-2 s-1 sr-1]	1.59E-15	2.02E-15	1.35E-15	1.67E-14	d _E μ flux [km ⁻² yτ ⁻¹ GeV ⁻¹]	2.55E-06	2.55E-06	2.77E-06	4.32E-06	
	POSITRO	ONS			NEUTRINOS FROM HALO					
e' flux [GeV-1 cm-2 s-1 sr-1]	2.24E-09	3.13E-09	1.68E-09	3.44E-08	µ flux from halo [km ⁻² yr ⁻¹]	1.10E-06	4.39E-05	2.84E-07	6.60E-03	

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/

R. Lemrani, ILIAS N3 / CEA Saclay

ind fluxes

Correlations

CHOOSE SETS OF PARAMETERS : MSUGRA :

m₀, m_{1/2}, A₀, sign(μ), tan(β) HALO MODELS:

isothermal , navarro-franck-white, moore, burkert, adiabatic INDIRECT DETECTION :

Line of sigth, angular resolution, aperture angle Thresholds (gamma, pbar, Dbar, e+, neutrino/muon)

AND CHOOSE 2 VARIABLES for bi-plots (23 variables):` WIMP NATURE

m0, m1/2, gaugino fraction, relic density, neutralino mass DIRECT DETECTION : WIMP - p(n) cross sections, SD and SI INDIRECT DETECTION :

fluxes (gamma, pbar, Dbar, e+, neutrino/muon) from galactic halo, sun, earth

Correlation SI cross-section with muon flux from earth

Conclusion and Outlook

- Expected recoil spectra and exclusion plots
- Generic WIMPS or MSUGRA Neutralino
- Experimental strategy : quenching, resolution and efficiency
- Combines experimental conditions
- Statistical treatment : Feldman Cousin, Yellin
- Indirect dark matter searches : fluxes for MSUGRA Neutralino
- Constraint of direct searches on MSUGRA models

OUTLOOK

- Interpretation of WIMP signal
- Complementarity with LHC
- Constraint of indirect searches on MSUGRA models

contact webmaster for contributions : codes, susy scans, and feedback on the tool