FeynHiggs

The Swiss Army Knife for MSSM Higgs Physics*

Sven Heinemeyer, IFCA (Santander)

Brussels, 11/2007

based on collaboration with T. Hahn, W. Hollik, H. Rzehak, G. Weiglein

- 1. Introduction
- 2. Recent theory developments
- 3. Parameter planes
- 4. Implementation into FeynHiggs 2.6
- 5. Conclusions

^k thanks to Pietro Slavich

1. Introduction

Higgs potential of the cMSSM contains two Higgs doublets:

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} - i\chi_{1})/\sqrt{2} \\ -\phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$$

+ $\frac{{g'}^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$

yauye coupings, in contrast to sivi

Five physical states: h^0, H^0, A^0, H^{\pm} (no CPV at tree-level) 2 CP-violating phases: ξ , $\arg(m_{12}) \Rightarrow$ can be set/rotated to zero Input parameters: $\tan\beta=\frac{v_2}{v_1} \text{ and } M_{H^\pm}$

Effects of complex parameters in the Higgs sector:

Complex parameters enter via loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\tilde{g}}$: gluino mass
- \Rightarrow can induce $\mathcal{CP}\text{-violating}$ effects

Result:

$$(A, H, h) \rightarrow (h_3, h_2, h_1)$$

with

$$M_{h_3} > M_{h_2} > M_{h_1}$$

Propagator/Mass matrix at tree-level:

$$\begin{pmatrix} q^2 - m_A^2 & 0 & 0 \\ 0 & q^2 - m_H^2 & 0 \\ 0 & 0 & q^2 - m_h^2 \end{pmatrix}$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hHA}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{A}^{2} + \hat{\Sigma}_{AA}(q^{2}) & \hat{\Sigma}_{AH}(q^{2}) & \hat{\Sigma}_{Ah}(q^{2}) \\ \hat{\Sigma}_{HA}(q^{2}) & q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \hat{\Sigma}_{hA}(q^{2}) & \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H, A) : renormalized Higgs self-energies $\hat{\Sigma}_{Ah}, \hat{\Sigma}_{AH} \neq 0 \Rightarrow CPV, CP$ -even and CP-odd fields can mix \Rightarrow complex roots of det $(M_{hHA}^2(q^2))$: $\mathcal{M}_{h_i}^2(i = 1, 2, 3)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

2. Recent theory developments

2A) New two-loop corrections in the cMSSM

Propagator / mass matrix with higher-order corrections:

$$M_{hHA}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{A}^{2} + \hat{\Sigma}_{AA}(q^{2}) & \hat{\Sigma}_{AH}(q^{2}) & \hat{\Sigma}_{Ah}(q^{2}) \\ & \hat{\Sigma}_{HA}(q^{2}) & q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ & \hat{\Sigma}_{hA}(q^{2}) & \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H, A) : renormalized Higgs self-energies $\hat{\Sigma}_{Ah}, \hat{\Sigma}_{AH} \neq 0 \Rightarrow CPV$

Our result for $\hat{\Sigma}_{ij}$:

- full 1-loop: complex phases, q^2 -dep., imaginary parts
- newly implemented: cMSSM $\mathcal{O}(\alpha_t \alpha_s)$ corrections in the FD approach rMSSM: difference between FD and RGiEP approach \mathcal{O} (few GeV)

 \Rightarrow numerical search for the complex roots of det $(M_{hHA}^2(q^2)) \Rightarrow \mathcal{M}_{h_i}^2$

 $\frac{M_{h_1}}{[S.H., W. Hollik, H. Rzehak, G. Weiglein '07]}$

$$\begin{split} M_{\text{SUSY}} &= 1000 \text{ GeV} \\ |A_t| &= 2000 \text{ GeV} \\ \tan \beta &= 10 \\ M_{H^{\pm}} &= 150 \text{ GeV} \\ \text{OS renormalization} \\ &\Rightarrow \text{modified dependence} \\ & \text{on } \phi_{A_t} \text{ at the 2-loop level} \end{split}$$

 $\frac{M_{h_1}}{[S.H., W. Hollik, H. Rzehak, G. Weiglein '07]}$

 $M_{SUSY} = 500 \text{ GeV}$ $A_t = 1000 \text{ GeV}$ $\tan\beta = 10$ $M_{H^{\pm}} = 500 \text{ GeV}$ OS renormalization \Rightarrow threshold at $m_{\tilde{q}} = m_{\tilde{t}} + m_t$ \Rightarrow large effects around threshold \Rightarrow phase dependence has to be taken

into account

2B) External (on-shell) Higgs bosons

Examples for external (on-shell) Higgs bosons ($\phi = h_1, h_2, h_3$):

Higgs production:

\Rightarrow important to ensure on-shell properties of external Higgs boson

h, H, A: loop-corrected (neutral) Higgs bosons

Amplitude:

$$A(h \to f\bar{f}) = \sqrt{Z_h} \left(\Gamma_h + Z_{hH} \Gamma_H + Z_{hA} \Gamma_A \right)$$

 $\Gamma_{h,H,A}$: coupling of h, H, A to $f\bar{f}$

 $\sqrt{Z_h}$: ensures that the residuum of the external Higgs boson is set to 1 Z_{hH}, Z_{hA} : describes the transition from $h \to H/A$

Written more compact with the \mathbf{Z} matrix:

$$\mathbf{Z}_{ij} = \sqrt{Z_i} \, Z_{ij}$$

2C) Internal Higgs bosons

Examples for Higgs bosons entering loop corrections:

Vector boson self-energies:

e.g. in μ decay, precision observables, . . .

 $(V_{1,2,3} = Z, W^{\pm})$

 $\phi_{i,j} = h, H, A$ (tree-level states): $\Rightarrow ok$

But what if $\phi_{i,j} = h_1, h_2, h_3$? \Rightarrow How to include higher-order corrections to the Higgs bosons properly? \Rightarrow How to define "effective couplings"? Two possibilities:

1.) " p^2 on-shell": U

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}_{p^2 \text{ on-shell}} = \mathbf{U} \cdot \begin{pmatrix} h \\ H \\ A \end{pmatrix}, \quad p^2 \text{ on-shell} : \frac{\hat{\Sigma}_{ii}(p^2) \rightarrow \hat{\Sigma}_{ii}(m_i^2)}{\hat{\Sigma}_{ij}(p^2) \rightarrow \hat{\Sigma}_{ij}((m_i^2 + m_j^2)/2)}$$
$$\mathbf{U} \operatorname{Re} \left(\mathbf{M}_{hHA}(p^2 \text{ on-shell}) \right) \mathbf{U}^{\dagger} = \begin{pmatrix} M_{h_1, p^2 \text{ os}}^2 & 0 & 0 \\ 0 & M_{h_2, p^2 \text{ os}}^2 & 0 \\ 0 & 0 & M_{h_3, p^2 \text{ os}}^2 \end{pmatrix}$$

2.) " $p^2 = 0$ ": **R** (*CPC* case, 2 × 2 mixing $\Rightarrow \alpha_{eff}$)

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}_{p^2=0} = \mathbf{R} \cdot \begin{pmatrix} h \\ H \\ A \end{pmatrix}, \ \mathbf{R} \mathbf{M}_{hHA}(0) \mathbf{R}^{\dagger} = \begin{pmatrix} M_{h_1,p^2=0}^2 & 0 & 0 \\ 0 & M_{h_2,p^2=0}^2 & 0 \\ 0 & 0 & M_{h_3,p^2=0}^2 \end{pmatrix}$$

Numerical example for external Higgs bosons:

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '07]

 $M_{\rm SUSY}=m_{\tilde{g}}=M_2=500~{\rm GeV},~A_t=1000~{\rm GeV},~\mu=1000~{\rm GeV},~M_{H^\pm}=150~{\rm GeV}$

red solid: ${\bf Z}$, blue solid: ${\bf U}$, blue dashed: ${\bf R}$

 \Rightarrow U gives results closer to full result than R \Rightarrow deviations at the 5-10% level

Numerical example for external Higgs bosons:

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '07]

 $M_{\rm SUSY}=m_{\tilde{g}}=M_2=500~{\rm GeV},~A_t=1000~{\rm GeV},~\mu=1000~{\rm GeV},~M_{H^\pm}=150~{\rm GeV}$

red solid: ${\bf Z}$, blue solid: ${\bf U}$, blue dashed: ${\bf R}$

Included in FeynHiggs: Z, U, R

Comparison with other codes/calculations:

FeynHiggs is the only code that has

- evaluation of $\Gamma(h_i\to\ldots)$ with external Higgs, bosons on-shell i.e. evaluated with ${\bf Z}$
- evaluation of $BR(h_i \rightarrow ...)$ with external Higgs, bosons on-shell i.e. evaluated with Z
- evaluation of $\sigma_{\text{Tev,LHC}}(\ldots \rightarrow h_i + X)$ with external Higgs bosons on-shell, i.e. evaluated with Z
- evaluation of effective couplings with ${\bf U}$ or ${\bf R}$
- $\text{Im}\,\widehat{\Sigma}$ included consistently in mass and coupling evaluation

Other codes/calculations:

- rely on evaluation of $\Gamma,\ \mathsf{BR}$ with R (possibly with U)
- effective potential approach corresponds to $\ensuremath{\mathbf{R}}$
- \Rightarrow see numerical examples (in the back-up slides) for size of effects

3. Parameter planes

Search for the MSSM Higgs bosons:

 \rightarrow investigate <u>benchmark scenarios</u>:

 \rightarrow Vary only M_A and $\tan\beta$

 \rightarrow Keep all other SUSY parameters fixed

1. m_h^{max} scenario:

 \rightarrow obtain conservative tan β exclusion bounds ($X_t = 2 M_{SUSY}$)

2. no-mixing scenario

 \rightarrow no mixing in the scalar top sector ($X_t = 0$)

3. small $\alpha_{\rm eff}$ scenario

 $\rightarrow hb\overline{b}$ coupling $\sim \sin \alpha_{\rm eff} / \cos \beta$ can be zero: $\alpha_{\rm eff} \rightarrow 0$: main decay mode vanishes, important search channel vanishes

4. gluophobic Higgs scenario

 $\rightarrow hgg$ coupling is small: main LHC production mode vanishes [*M. Carena, S.H., C. Wagner, G. Weiglein '02*]

\rightarrow included in FeynHiggs for a long time

Possible external constraints:

- cold dark matter (CDM)
- BR($b \rightarrow s\gamma$)
- anomalous magnetic moment of the μ (reason for change from $\mu = -200 \text{ GeV} \rightarrow \mu = +200 \text{ GeV}$)

 \Rightarrow so far ignored (for (good) reasons)

Wanted: M_A -tan β planes in agreement with CDM

Possible external constraints:

- cold dark matter (CDM)
- $BR(b \rightarrow s\gamma)$
- anomalous magnetic moment of the μ (reason for change from $\mu = -200 \text{ GeV} \rightarrow \mu = +200 \text{ GeV}$)

```
\Rightarrow so far ignored (for (good) reasons)
```

Wanted: M_A -tan β planes in agreement with CDM

Possible models:

1.) CMSSM (or mSUGRA):

 \Rightarrow Scenario characterized by

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

 \Rightarrow too restricted

Possible external constraints:

cold dark matter (CDM)

- BR($b \rightarrow s\gamma$)

- anomalous magnetic moment of the μ (reason for change from $\mu = -200 \text{ GeV} \rightarrow \mu = +200 \text{ GeV}$)

```
\Rightarrow so far ignored (for (good) reasons)
```

Wanted: M_A -tan β planes in agreement with CDM

 <u>2.) NUHM</u>: (Non-universal Higgs mass model)
 Assumption: no unification of scalar fermion and scalar Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ free parameters at the EW scale

\Rightarrow besides the CMSSM parameters				
M_A and μ				

Results: NUHM: planes 1,2

[J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

⇒ good χ^2 (M_W , sin² θ_{eff} , Γ_Z , M_h , (g-2)_µ, BR($b \rightarrow s\gamma$) and other BPO) ⇒ larger regions o.k.

Results: NUHM: planes 3,4

[J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

⇒ good χ^2 (M_W , sin² θ_{eff} , Γ_Z , M_h , (g-2)_µ, BR($b \rightarrow s\gamma$) and other BPO) ⇒ larger regions o.k.

4. Implementation into FeynHiggs 2.6

Latest version: FeynHiggs 2.6.2 (11/07) (gestern!) version FeynHiggs 2.6.3 to be released this year ...

 $FeynHiggs 2.2 \rightarrow FeynHiggs 2.6$: main new features

- $\mathcal{O}(\alpha_t \alpha_s)$ corrections in the cMSSM
- Complex contributions to Higgs mass matrix taken into account (from $\text{Im } B_0(\ldots) \neq 0$)
- Higgs masses are now the real part of the complex pole
- \Rightarrow complex 3 × 3 mixing matrix $Z \Rightarrow$ external (on-shell) Higgs bosons unitary 3 × 3 mixing matrix U or $R \Rightarrow$ Higgs bosons in loops

 \Rightarrow included in all Higgs production and decay

- inclusion of full one-loop NMFV effects
- Implementation of new M_A -tan β planes in agreement with CDM
- EDMs of electron, neutron, Hg, ...

Included in FeynHiggs 2.6 (I):

Evaluation of all Higgs boson masses and mixing angles

• $M_{h_1}, M_{h_2}, M_{h_3}, M_{H^{\pm}}$, $\alpha_{\text{eff}}, \mathbf{Z}_{ij}, \mathbf{U}_{ij}, \mathbf{R}_{ij}, \ldots$

Evaluation of all neutral Higgs boson decay channels \Leftarrow with Z

- total decay width Γ_{tot}
- $\mathsf{BR}(h_i \to f\bar{f})$: decay to SM fermions
- $BR(h_i \rightarrow \gamma\gamma, ZZ^{(*)}, WW^{(*)}, gg)$: decay to SM gauge bosons
- $BR(h_i \rightarrow h_j Z^{(*)}, h_j h_k)$: decay to gauge and Higgs bosons
- $\mathsf{BR}(h_i \to \tilde{f}_i \tilde{f}_j)$: decay to sfermions
- BR $(h_i \rightarrow \tilde{\chi}_i^{\pm} \tilde{\chi}_j^{\pm}, \tilde{\chi}_i^0 \tilde{\chi}_j^0)$: decay to charginos, neutralinos

Evaluation for the SM Higgs (same masses as the three MSSM Higgses)

- total decay width Γ_{tot}^{SM}
- $\mathsf{BR}(h_i^{\mathsf{SM}} \to f\bar{f})$: decay to SM fermions
- $BR(h_i^{SM} \rightarrow \gamma\gamma, ZZ^{(*)}, WW^{(*)}, gg)$: decay to SM gauge bosons

Included in FeynHiggs 2.6 (II):

Evaluation of all neutral Higgs boson production cross sections at Tevatron/LHC \Leftarrow with Z

SM: (more or less) up-to-date, MSSM: additional effective couplings

- $gg \rightarrow h_i$: gluon fusion (\rightarrow updated in FeynHiggs 2.6.3)
- $WW \rightarrow h_i$, $ZZ \rightarrow h_i$: gauge boson fusion
- $W \rightarrow Wh_i$, $Z \rightarrow Zh_i$: Higgs strahlung
- $b\overline{b} \rightarrow b\overline{b}h_i$: bottom Yukawa process
- $b\overline{b} \rightarrow b\overline{b}h_i, \ h_i \rightarrow b\overline{b}$, one b tagged
- $t\overline{t} \rightarrow t\overline{t}h_i$: top Yukawa process
- $t\bar{t} \rightarrow t\bar{t}h_i$: stop Yukawa process

Evaluation for the SM Higgs (same masses as the three MSSM Higgses)

• all SM channels as above

Included in FeynHiggs 2.6 (III):

Evaluations for the charged Higgs boson (rMSSM/cMSSM)

- total decay width Γ_{tot}
- BR $(H^+ \rightarrow f^{(*)}\bar{f}')$: decay to SM fermions
- $BR(H^+ \rightarrow h_i W^{+(*)})$: decay to gauge and Higgs bosons
- $\mathsf{BR}(H^+ \to \tilde{f}_i \tilde{f}'_i)$: decay to sfermions
- BR $(H^+ \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_j^+)$: decay to charginos and neutralinos
- H^+ production cross sections at Tevatron and LHC
- $\mathsf{BR}(t \to H^+ \overline{b})$ for $M_{H^\pm} \le m_t$ (H^\pm production)

Evaluation of additional couplings: \Leftarrow with U or R

- $g(V \rightarrow Vh_i, h_ih_j)$: coupling of gauge and Higgs bosons
- $g(h_i h_j h_k)$: all Higgs self couplings (including charged Higgs)

Included in FeynHiggs 2.6 (IV):

Evaluation of theory error on masses and mixing

 \rightarrow estimate of uncertainty in M_{h_i} , U_{ij} , Z_{ij} from unknown higher-order corr.

Evaluation of masses, mixing and decay in the NMFV MSSM

NMFV: Non Minimal Flavor Violation [Hahn, S.H., Hollik, Merz, Peñaranda '04-'06] \Rightarrow Connection to Flavor physics

Evaluation of additional constraints (rMSSM/cMSSM)

- ρ -parameter: $\Delta \rho^{\text{SUSY}}$ at $\mathcal{O}(\alpha)$, $\mathcal{O}(\alpha \alpha_s)$, ..., including NMFV effects $\Rightarrow M_W$, $\sin^2 \theta_{\text{eff}}$ via SM formula + $\Delta \rho^{\text{SUSY}}$, including NMFV effects
- anomalous magnetic moment of the μ : $(g-2)_{\mu}$
- $\mathsf{BR}(b \to s\gamma)$, including NMFV effects [T. Hahn, W. Hollik, J. Illana, S. Peñaranda '06]
- LEP Higgs constraints (preliminary) [LEP Higgs WG '06]
- EDMs of electron, neutron, Hg, ...

Included in FeynHiggs 2.6 (V):

Planned:

. . .

- ILC production cross sections
- γC production cross sections
- full one-loop corrections to all (remaining) Higgs decays
- flavor violating Higgs decays

If you need something, just let us know!

New M_A -tan β planes:

Data accessed within FeynHiggs in terms of tables with a grid for M_A and tan β

ΜT	MSUSY	MA0	ТΒ	AT	MUE	
171.4	500	200	5	1000	761	
171.4	500	210	5	1000	753	
:	:	:	÷	:	:	:
171.4	500	200	6	1000	742	
171.4	500	210	6	1000	735	
•	:	:	:	•	:	•

FeynHiggs interpolates between the four NWSE points in M_A and $\tan \beta$ FeynHiggs gives an error if $\{M_A, \tan \beta\}$ combination is not allowed

4 M_A -tan β planes can be downloaded from www.feynhiggs.de Definition of new planes by the user is possible (respect table format)

How to install FeynHiggs 2.6

- 1. Go to www.feynhiggs.de
- 2. Download the latest version
- **4**. 4 possible ways to use *FeynHiggs*:
 - A) Command-line mode (allows also running on the GRID)
 - B) called from a Fortran/C++ code
 - C) called within Mathematica
 - D) WWW mode

processing of Les Houches Accord data possible

5. Detailed instructions and help are provided in the man pages

How to run FeynHiggs 2.6

- Loops over parameter values possible (parameter scans).
- Mask off details with FeynHiggs file [flags] | grep -v %
- table utility converts to machine-readable format, e.g.
 FeynHiggs file [flags] | table TB Mh0 > outfile

Example for new M_A -tan β planes:

Input Fil	e ("normal")		
MT MB MW MZ MSusy MAO Abs(M_2) Abs(MUE) TB Abs(At) Abs(At) Abs(Ab) Abs(M_3)	172.7 4.7 80.4 91.1 975 200 332 980 50 -300 1500 975	Input MAO TB table	t File ("new") 227 23 ehoww.A2.dat MAO TB

- Loops over parameter values possible (parameter scans).
 MAO 200 500 10
 TB 5 50 *2
- Mask off details with FeynHiggs file [flags] | grep -v %
- table utility converts to machine-readable format, e.g.
 FeynHiggs file [flags] | table TB Mh0 > outfile

SUSY Les Houches Accord(2) Format

- { Uses / was developed into } the SLHA(2) I/O Library. [*T. Hahn '04, '06*]
- SLHA(2) can also be used in Library Mode with FHSetSLHA.
- FeynHiggs tries to read each file in SLHA(2) format first. If that fails, fallback to native format.

B) Called from a Fortran/C++ code

Link *FeynHiggs* as a subroutine \Rightarrow link libFH.a

call FHSetFlags(...) :

 \rightarrow specification of accuracy etc.

call FHSetPara(...) :

 \rightarrow specify input parameters

call FHGetPara(...) :

 \rightarrow obtain derived parameters

call FHHiggsCorr(...) :

 \rightarrow obtain Higgs boson masses and mixings

call FHUncertainties(...) :

 \rightarrow obtain theory error on Higgs boson masses and mixings from unknown higher-order corrections

call FHCouplings(...), FHHiggsProds(...), ... : \rightarrow obtain decay widths, BRs, XSs, etc.

C) Called within Mathematica

• install the math link to *MFeynHiggs*, e.g.:

Install[''MFeynHiggs'']

• FHSetFlags[...] :

 \rightarrow specification of accuracy etc.

FHSetPara[...] :

 \rightarrow specify input parameters

FHGetPara[] : \rightarrow obtain derived parameters

FHHiggsCorr[] :

 \rightarrow obtain Higgs boson masses and mixings

```
FHUncertainties[] :
```

 \rightarrow obtain theory error on Higgs boson masses and mixings from unknown higher-order corrections

FHCouplings[], FHHiggsProds[], ... :

 \rightarrow obtain decay widths, BRs etc.

- 1. The FeynHiggs User Control Center is available at www.feynhiggs.de/fhucc
- 2. Enter you parameters on-line in the web page
- 3. Obtain your results with a mouse click

 \Rightarrow for single points and checks of your downloaded version of FeynHiggs \Rightarrow always the latest version

 \Rightarrow online presentation

Also man pages are available on-line

D) WWW mode

1. The FeynHiggs User Control Center is available at

	000	Mozilla Firefox	:		0	/fhucc
	🛶 🔹 😴 🚱 🏠 🞯 http://www.feynhiggs.de/fhucc			🔻 🕨 🤇 🕶 Google	Q) *	•
2	The FeynHiggs User Control Co	enter				
	You can still access the version $\frac{2.5.1}{2.3.2}$.					
3.	Flags					
	Scope of the 1-loop part: full MSSM	•				
\Rightarrow	1-loop field renormalization: DRbar					Higas
\Rightarrow	1-loop tan(beta) renormalization: DRbar		<u> </u>			55
	Mixing in the neutral Higgs sector: $2x2$ (h0-HH) mixing = real para	neters	•			
	Approximation for the 1-loop result: no approximation				U	

Also man pages are available on-line

5. Conclusinos

- Precise MSSM Higgs sector evaluation necessary to
 - do phenomenological analyses at the Tevatron and the LHC
 - exploit anticipated ILC precision, be sensitive to small deviations
- FeynHiggs 2.6 provides Higgs boson masses, mixing angles, couplings, branching ratios, Tev/LHC XS, etc. in the MSSM with/without complex parameters (and for NMFV)
- Correction of $\mathcal{O}(\alpha_t \alpha_s)$ in the cMSSM included
- Important to treat higher-order corrected Higgs bosons correctly:
 - external (on-shell) Higgs
 - Higgs in loop diagrams

Solution: Z for external (on-shell) Higgs, U or R for Higgs in loops

- – Z consistently included (only FeynHiggs!)
 - U, R consistently included for effective couplings \Rightarrow effects up to 5-10%
 - Im $\hat{\Sigma}$ consistently included in masses and couplings (only FeynHiggs!) \Rightarrow effects up to 5 GeV
- benchmark scenarios: M_A -tan β planes in agreement with CDM included

5. Conclusinos

- Precise MSSM Higgs sector evaluation necessary to
 - do phenor
 - exploit ant
- FeynHiggs 2.(couplings, brain the MSSM
- Correction of
- Important to
 external (c
 - Higgs in lo
 - Solution: \mathbf{Z} for
- \mathbf{Z} consister
 - $\mathbf{U}, \mathbf{R} \text{ consi} \\ \Rightarrow \text{effects } \iota$

and the LHC small deviations

g angles,

S

ind for NMFV)

sons correctly:

or Higgs in loops

- Im $\hat{\Sigma}$ consistently measure in masses and couplings (only FeynHiggs!) \Rightarrow effects up to 5 GeV
- benchmark scenarios: M_A -tan β planes in agreement with CDM included

 $\sqrt{Z_i}$: ensures that the residuum of the external Higgs boson is set to 1 Z_{ij} : describes the transition from $i \rightarrow j$

$$Z_i = \left[1 + \left(\widehat{\Sigma}_{ii}^{\text{eff}}\right)'(\mathcal{M}_i^2)\right]^{-1}$$

$$\begin{split} \widehat{\boldsymbol{\Sigma}}_{ii}^{\text{eff}}(p^2) &= \widehat{\boldsymbol{\Sigma}}_{ii}(p^2) \\ &- i \frac{2\widehat{\Gamma}_{ij}(p^2)\widehat{\Gamma}_{jk}(p^2)\widehat{\Gamma}_{ki}(p^2) - \widehat{\Gamma}_{ki}^2(p^2)\widehat{\Gamma}_{jj}(p^2) - \widehat{\Gamma}_{ij}^2(p^2)\widehat{\Gamma}_{kk}(p^2)}{\widehat{\Gamma}_{jj}(p^2)\widehat{\Gamma}_{kk}(p^2) - \widehat{\Gamma}_{jk}^2(p^2)} \end{split}$$

$$Z_{ij} = \frac{\Delta_{ij}(p^2)}{\Delta_{ii}(p^2)}\Big|_{p^2 = \mathcal{M}_i^2}$$

$$\widehat{\Gamma}(p^2) = iM_{hHA}^2(p^2)$$
$$\Delta(p^2) = \left(-\Gamma(p^2)\right)^{-1}$$

 m_i : tree-level masses

 M_i : higher-order corrected masses

Limit $p^2 \rightarrow 0$:

$$\mathbf{Z} \rightarrow \mathbf{R} : \mathbf{R} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}_{p^2 = 0} = \mathbf{R} \cdot \begin{pmatrix} h \\ H \\ A \end{pmatrix}, \ \mathbf{R} \,\mathbf{M}_{hHA}(0) \,\mathbf{R}^{\dagger} = \begin{pmatrix} M_{h_1, p^2 = 0}^2 & 0 & 0 \\ 0 & M_{h_2, p^2 = 0}^2 & 0 \\ 0 & 0 & M_{h_3, p^2 = 0}^2 \end{pmatrix}$$

– **R** in the 2 × 2 case is exactly α_{eff}

 $-\ \mathbf{R}$ corresponds to the effective potential approach

What is better?

- 1.) " p^2 on-shell": U
- 2.) " $p^2 = 0$ ": R

Two possible tests:

- 1. Compare full decay width, evaluated with Z, with approximations, evaluated with U or R \rightarrow see later in "Numerical examples"
- 2. U_{33}^2 and R_{33}^2 correspond to the *CP*-odd part of h_3 In the rMSSM: U_{33}^2 , $R_{33}^2 = 0$ or 1 (depending on mass ordering) Switch-over from 0 to 1 should happen for $\Delta M_{32} := M_{h_3} - M_{h_2} = 0$ \rightarrow compare switch-over with ΔM_{32}

 \rightarrow Compare switch-over with ΔM_{32} :

 $M_{\rm SUSY} = m_{\tilde{q}} = M_2 = 500 {\rm ~GeV}, \ \mu = 1000 {\rm ~GeV}, \ M_{H^{\pm}} = 150 {\rm ~GeV}$

 \Rightarrow U gives the better results \Rightarrow use U for effective couplings 1. external/on-shell Higgs bosons

amplitude with on-shell Higgs boson i:

$$A_{h_ixy} \sim \sqrt{Z_i} \left(Z_{ih}C_{hxy} + Z_{iH}C_{Hxy} + Z_{iA}C_{Axy} \right)$$

 Z_i , Z_{ij} : finite wave function renormalizations Written more compact with the **Z** matrix:

$$\mathbf{Z}_{ij} = \sqrt{Z_i} \, Z_{ij}$$

resulting in

$$A_{h_i xy} \sim \mathbf{Z}_{ih} C_{hxy} + \mathbf{Z}_{iH} C_{Hxy} + \mathbf{Z}_{iA} C_{Axy}$$

2. Higgs bosons in loop corrections

rotate tree-level couplings with ${\bf U}$ or ${\bf R}$:

$$C_{h_i xy} = \mathbf{U}_{ih} C_{hxy} + \mathbf{U}_{iH} C_{Hxy} + \mathbf{U}_{iA} C_{Axy}$$

$$C_{h_i xy} = \mathbf{R}_{ih} C_{hxy} + \mathbf{R}_{iH} C_{Hxy} + \mathbf{R}_{iA} C_{Axy}$$

Numerical results (II):

[*M. Frank, T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '06*] $M_{SUSY} = m_{\tilde{g}} = M_2 = 500 \text{ GeV}, A_t = 1000 \text{ GeV}, \mu = 1000 \text{ GeV}, M_{H^{\pm}} = 150 \text{ GeV}$

 $\Gamma(h_1 \rightarrow \tau^+ \tau^-)$ as a function of ϕ_{X_t}

solid: ${\bf Z}$, dashed: ${\bf U}$, dot-dashed: ${\bf R}$

 \Rightarrow U gives results closer to full result than R \Rightarrow deviations at the 5-10% level

Numerical results (III):

[*M. Frank, T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '06*] $M_{SUSY} = m_{\tilde{g}} = M_2 = 500 \text{ GeV}, |A_t| = 1000 \text{ GeV}, \mu = 1000 \text{ GeV}, M_{H^{\pm}} = 1000 \text{ GeV}$

 $p^2 \neq 0$ p^2 on-shell $p^2 = 0$ $Im \Sigma = 0$ $|A_t| = 1000 \, \text{GeV}$ φ_{A_t} $\tan\beta$ 20 20 $\tan \beta = 15$ 15 15 $M_{H^{\pm}} = 1000 \text{ GeV}$ ΔM_{32} 10 10 GeV $\tan\beta = 5$ $M_{H^{\pm}} = 700 \, \text{GeV}$ 5 5 $M_{H^{\pm}} = 1000 \,\mathrm{GeV}$ $\varphi_{A_t} = \pi$ $-\pi/2$ 0 $\pi/2$ 5 10 20 30 40 50 π $-\pi$

Effects of Im $\hat{\Sigma}$ on $\Delta M_{32} := M_{h_3} - M_{h_2}$

\Rightarrow differences of up to 5 GeV

Numerical results (IV): [M. Frank, T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '06] $M_{SUSY} = m_{\tilde{g}} = M_2 = 500 \text{ GeV}, \ \mu = 1000 \text{ GeV}, \ M_{H^{\pm}} = 150 \text{ GeV}$

Difference between U_{33}^2 and R_{33}^2 :

\Rightarrow large deviations where ΔM_{32} is small

Numerical results (IV): [M. Frank, T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '06] $M_{SUSY} = m_{\tilde{g}} = M_2 = 500 \text{ GeV}, \ \mu = 1000 \text{ GeV}, \ M_{H^{\pm}} = 150 \text{ GeV}$

Difference between U_{33}^2 and R_{33}^2 :

\Rightarrow large deviations where ΔM_{32} is small