Recent developments in neutrino physics

Belén Gavela Universidad Autónoma de Madrid and IFT

What are the main physics goals in ν physics?

• To determine the absolute scale of masses

• To determine whether they are Dirac or Majorana

* To discover Leptonic CP-violation

What are the main physics goals in ν physics?

• To determine the absolute scale of masses

• To determine whether they are Dirac or Majorana

* To discover Leptonic CP-violation

Can leptogenesis be "proved"?

The short, and rather accurate answer

NO

Nevertheless, a positive discovery of <u>both</u> 2 last points

would constitute a very compelling argument in favour of leptogenesis The short, and rather accurate answer

NO

Nevertheless, a positive discovery of <u>both</u> 2 last points

would constitute a very compelling argument in favour of leptogenesis

Go for those discoveries!

What are the main physics goals in ν physics?

- To determine the absolute scale of masses
- To determine whether they are Dirac or Majorana (neutrinoless ββ decay, degenerate or inverse hierarchy)
- To discover Leptonic CP-violation (in v_{μ} - v_{e} oscillations at superbeams, betabeams.... neutrino factory)

Where are we today?

•Absolute mass scale:

---- Cosmo: $\sim \Sigma m < 1eV$ ---- Tritium

• Majorana character:

---- $0\nu\beta\beta$ decay ~ m_{β} < 2.3 eV

3-flavour oscillation parameters

T. Schwetz, NuFact07 - p.3

3-flavour oscillation parameters

	bf $\pm 1\sigma$	acc. $@3\sigma$	
Δm^2_{21}	$(7.9\pm0.3)10^{-5}\mathrm{eV}^2$	(11%)	KamLAND
$\sin^2 heta_{12}$	$0.3\substack{+0.02\\-0.03}$	(27%)	SNO CC/NC
$ \Delta m^2_{31} $	$(2.4^{+0.20}_{-0.16})10^{-3}\mathrm{eV^2}$	(24%)	MINOS*
$\sin^2 heta_{23}$	$0.50\substack{+0.08\\-0.07}$	(34%)	SK atm
$\sin^2 heta_{13}$	$< 0.04 \; (\sin^2 2 heta_{13} < 0.1)$.5) @ 3 σ	CHOOZ

*numbers from recent MINOS update

(T. Schwetz at Nufact07)

MINOS update

MINOS update

3-flavour oscillation parameters

	bf $\pm 1\sigma$	acc. $@3\sigma$	
Δm^2_{21}	$(7.9\pm0.3)10^{-5}\mathrm{eV}^2$	(11%)	KamLAND
$\sin^2 heta_{12}$	$0.3\substack{+0.02\\-0.03}$	(27%)	SNO CC/NC
$ \Delta m^2_{31} $	$(2.4^{+0.20}_{-0.16})10^{-3}\mathrm{eV^2}$	(24%)	MINOS*
$\sin^2 heta_{23}$	$0.50\substack{+0.08\\-0.07}$	(34%)	SK atm
$\sin^2 heta_{13}$	$< 0.04 \; (\sin^2 2 heta_{13} < 0.1)$.5) @ 3 σ	CHOOZ

*numbers from recent MINOS update

(T. Schwetz at Nufact07)

θ_{13} future sensitivities

Going towards the era of precision neutrino physics

What are the main physics goals in ν physics?

• To determine the absolute scale of masses

• To determine whether they are Dirac or Majorana

* To discover Leptonic CP-violation

only three v ????

MiniBoone shows, for the first time, that only $3v_s$ is OK ?

Designed to check LSND signal of > 3 Vs

LSND: observed $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, $E_{\nu} \sim 30$ MeV, L= 35 m MiniBoone: explored $\nu_{\mu} \rightarrow \nu_{e}$, $E_{\nu} \sim 750$ MeV, L= 541 m and did not find it

-> more than 3 v generations

MiniBoone

1

Slide from Kajita Nufact07)

Tension with disappearance data, and ruled out by MiniBoone Ruled out by solar+atmosph.

(Maltoni+Schwetz07)

All short base line vs. LSND

(3+1analysis alike to 2-flavour analysis)

The MiniBoone excess

Excess of ~ 100 ν_e events below 475 MeV

Excess reinforced during summer

What if there was something in there + LSND ?

After all, vs are favorite probes of "dark" sectors:

they can mix with sterile fermions of BSM theories

MiniBoone shows, for the first time, that only $3 v_s$ is OK

LSND: observed $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, $E_{\nu} \sim 30$ MeV, L= 35 m MiniBoone: explored $\nu_{\mu} \rightarrow \nu_{e}$, $E_{\nu} \sim 750$ MeV, L= 541 m

i.e. A new gauged B-L force

LSND, MiniBoone go through matter: MSW-like effect ?

- •Spontaneous B-L violation
- Gauge boson mass at keV
- Sterile neutrinos at eV with miniseesaw

(Ann Nelson and collab.)

Heavy V's mix with Effective Energy dependent mixing angle

- 19 ≈ m M/(4 VE+ M²)
- bigger for anti neutrinos (negative V)
- for neutrinos smaller at high energy

$$M_{eff}^2 = \begin{pmatrix} m^2 & mM \\ mM & 4VE + M^2 + m^2 \end{pmatrix}$$

(Nelson Retenu07)

Energy (MeV)

(Nelson Retenu07)

Effects of B-L potential

eg m=.3 eV, M₁ = 1 eV, M₂ heavy, V = 0.3 10⁻⁹

Falsifiable: they predict large signal in on-going antineutrino run at MiniBoone Assume 3 light v_s for the rest of the talk

What are the main physics goals in ν physics?

• To determine the absolute scale of masses

• To determine whether they are Dirac or Majorana

* To discover Leptonic CP-violation

.....The rest of the talk deals much with the Majorana character

v masses ----> Beyond SM scale M

* What is the prize for M~TeV without unnatural fine-tunings?

* What observable observable effects could we then expect?

No v masses in the SM because the SM accidentally preserves B-L

.....only left-handed neutrinos

and

.....only scalar doublets (Higgs)

$\boldsymbol{\nu}$ masses beyond the SM

Favorite options: new physics at higher scale M

Heavy fields manifest in the low energy effective theory (SM) via higher dimensional operators

 $\delta L = c^i O^i$

Dimension 5 operator:

$$\lambda/M (L L H H) \rightarrow \lambda \sqrt{2}/M (\nu \nu)$$

It's unique \rightarrow very special role of v masses: lowest-order effect of higher energy physics

$\boldsymbol{\nu}$ masses beyond the SM

Favorite options: new physics at higher scale M

Heavy fields manifest in the low energy effective theory (SM) via higher dimensional operators

 $\delta L = c^i O^i$

Dimension 5 operator:

$$\lambda/M (L L H H) \rightarrow \lambda \sqrt{2}/M (\nu \nu)$$

It's unique \rightarrow very special role of v masses: lowest-order effect of higher energy physics

> This mass term violates lepton number (B-L) → Majorana neutrinos

$\boldsymbol{\nu}$ masses beyond the SM

Favorite options: new physics at higher scale M

Heavy fields manifest in the low energy effective theory (SM) via higher dimensional operators

 $\delta L = c^i O^i$

Dimension 5 operator:

$$\lambda/M (L L H H) \rightarrow \lambda \sqrt{2}/M (\nu \nu)$$

It's unique \rightarrow very special role of v masses: lowest-order effect of higher energy physics

> This mass term violates lepton number (B-L) \rightarrow Majorana neutrinos $O^{d=5}$ is common to all models of Majorana Vs
Dímensíon 6 operators, $0^{d=6}$

discriminate among models.

Which are the d=6 operators characteristic of Seesaw models?

(A. Abada, C. Biggio, F.Bonnet, T. Hambye +MBG)

$\mathbf v$ masses beyond the SM : tree level

3 generic types (Ma)

$\mathbf v$ masses beyond the SM : tree level

 $2 \ge 2 = 1 + 3$

\mathbf{v} masses beyond the SM : tree level

Fermionic Singlet Seesaw (or type I)

 $2 \ge 2 = 1 + 3$

Fermionic Singlet Seesaw (or type I)

 $2 \ge 2 = 1 + 3$ $m_v \sim v^2 C^{d=5} = v^2 Y_N^T Y_N / M_N$

Fermionic Singlet Seesaw (or type I)

 $2 \ge 2 = 1 + 3$ $m_v \sim v^2 C^{d=5} = v^2 Y_N^T Y_N / M_N$

Which allows $Y_N \sim 1 \rightarrow M \sim M_{Gut}$

Fermionic Singlet Seesaw (or type I)

 $2 \ge 2 = 1 + 3$ $m_v \sim v^2 C^{d=5} = v^2 Y_N^T Y_N / M_N$

> Which allows $Y_N \sim 1 \rightarrow M \sim M_{Gut}$ $Y_N \sim 10^{-6} \rightarrow M \sim TeV$

$\mathbf v$ masses beyond the SM : tree level

 $2 \ge 2 = 1 + 3$

$\mathbf v$ masses beyond the SM : tree level

 $2 \times 2 = 1 + 3$

Fermionic Triplet Seesaw (or type III)

 $2 \times 2 = 1 + 3$

Fermionic Triplet Seesaw (or type III)

(Hambye, Li, Papucci, Notari, Strumia))

$\mathbf v$ masses beyond the SM : tree level

 $2 \times 2 = 1 + 3$

$\mathbf v$ masses beyond the SM : tree level

Scalar Triplet Seesaw (or type II)

 $2 \times 2 = 1 + 3$

Or hybrid models, i.e Fermionic Singlet + Scalar Triplet

Heavy fermion singlet N_R (Type I See-Saw) Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic

Heavy scalar triplet Δ Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle

Heavy fermion triplet Σ_R Ma, Roy, Senjanovic, Hambye et al., ...

d=5 operator it gives mass to v

d=6 operator it renormalises kinetic energy

Broncano, Gavela, Jenkins 02

d=5 operator it gives mass to v

d=6 operator it renormalises kinetic energy

Kaluza-Klein model: De Gouvea, Giudice, Strumia, Tobe

with
$$m_v \sim v^2 \, \mathbf{C^{d=5}} = v^2 \, \mathbf{Y}_N \, \mathbf{Y}_N \, / \, \mathbf{M}_N$$

while

$$\mathbf{C^{d=6}} = \mathbf{Y}_{\Sigma}^{+} \mathbf{Y}_{\Sigma} / \mathbf{M}^{2}$$

For Y's ~ O(1),

$$\mathbf{C^{d=6} \sim (C^{d=5})^2}$$

and the smallness of neutrino masses would preclude in practice observable effects from $C^{d=6}$

How to evade this without ad-hoc cancelations of Yukawas?

d=5 operator it gives mass to v

d=6 operator it renormalises kinetic energy+...

Scalar triplet see-saw

 $L = L_{SM} + D_{\mu}D^{\mu}\Delta - \Delta^{+}M^{2}\Delta +$

 Y_{Δ} L τ.Δ L + μ_{Δ} H τ.Δ H + V(H,Δ, λ_i)

	Effective Lagrangian $\mathcal{L}_{eff} = c_i \mathcal{O}_i$		
Model	$c^{d=5}$	$c_i^{d=6}$	$\mathcal{O}_i^{d=6}$
Fermionic Singlet	$Y_N^T rac{1}{M_N} Y_N$	$Y_N^\dagger rac{1}{ M_N ^2} Y_N$	$\left(\overline{L}\widetilde{H} ight)i\partial\!\!\!/\left(\widetilde{H}^{\dagger}L ight)$
Fermionic Triplet	$Y_{\Sigma}^T rac{1}{M_{\Sigma}} Y_{\Sigma}$	$Y^\dagger_{\Sigma} rac{1}{ M_{\Sigma} ^2} Y_{\Sigma}$	$\left(\overline{L}\overrightarrow{\tau}\widetilde{H} ight)i D \left(\widetilde{H}^{\dagger}\overrightarrow{\tau}L ight)$
Scalar Triplet	$4Y_{\Delta}rac{\mu_{\Delta}}{ M_{\Delta} ^2}$	$egin{array}{c} Y_{\Delta}^{\dagger}rac{1}{2 M_{\Delta} ^2}Y_{\Delta} \ & rac{ \mu_{\Delta} ^2}{ M_{\Delta} ^4} \ -2\left(\lambda_3+\lambda_5 ight)rac{ \mu_{\Delta} ^2}{ M_{\Delta} ^4} \end{array}$	$ \begin{pmatrix} \overline{\widetilde{L}} \overrightarrow{\tau} L \end{pmatrix} \left(\overline{L} \overrightarrow{\tau} \widetilde{L} \right) \\ \left(H^{\dagger} \overrightarrow{\tau} \widetilde{H} \right) \left(\overleftarrow{D_{\mu}} \overrightarrow{D^{\mu}} \right) \left(\widetilde{H}^{\dagger} \overrightarrow{\tau} H \right) \\ \left(H^{\dagger} H \right)^{3} $
		$-2(\lambda_3 \pm \lambda_5)\frac{1}{ M_{\Delta} ^4}$	(11-11)

	Effective Lagrangian $\mathcal{L}_{eff} = c_i \mathcal{O}_i$		
Model	$c^{d=5}$	$c_i^{d=6}$	$\mathcal{O}_i^{d=6}$
Fermionic Singlet	$Y_N^T rac{1}{M_N} Y_N$	$(Y_N^\dagger rac{1}{\left M_N ight ^2} Y_N)$	$\left(\overline{L}\widetilde{H} ight)i\partial\!\!\!/\left(\widetilde{H}^{\dagger}L ight)$
Fermionic Triplet	$Y_{\Sigma}^T rac{1}{M_{\Sigma}} Y_{\Sigma}$	$Y^{\dagger}_{\Sigma}rac{1}{ M_{\Sigma} ^2}Y_{\Sigma}$	$\left(\overline{L}\overrightarrow{\tau}\widetilde{H} ight)i D \left(\widetilde{H}^{\dagger}\overrightarrow{\tau}L ight)$
Scalar Triplet	$4Y_{\Delta}rac{\mu_{\Delta}}{ M_{\Delta} ^2}$	$\underbrace{\begin{array}{c} Y_{\Delta}^{\dagger} \frac{1}{2 M_{\Delta} ^2} Y_{\Delta} \\ \\ \frac{ \mu_{\Delta} ^2}{ M_{\Delta} ^4} \end{array}}_{}$	$ \begin{array}{c} \left(\overline{\widetilde{L}} \overrightarrow{\tau} L \right) \left(\overline{L} \overrightarrow{\tau} \widetilde{L} \right) \\ \left(H^{\dagger} \overrightarrow{\tau} \widetilde{H} \right) \left(\overleftarrow{D_{\mu}} \overrightarrow{D^{\mu}} \right) \left(\widetilde{H}^{\dagger} \overrightarrow{\tau} H \right) \end{array} $
		$-2\left(\lambda_3+\lambda_5 ight)rac{ \mu_{\Delta} ^2}{ M_{\Delta} ^4}$	$(H^{\dagger}H)^{3}$

 $\downarrow \\ Y^+ Y \\ M^2$

	Effective Lagrangian $\mathcal{L}_{eff} = c_i \mathcal{O}_i$		
Model	$c^{d=5}$	$c_i^{d=6}$	$\mathcal{O}_i^{d=6}$
Fermionic Singlet	$Y_N^T rac{1}{M_N} Y_N$	$(Y_N^\dagger rac{1}{ M_N ^2} Y_N)$	$\left(\overline{L}\widetilde{H} ight) i \partial \hspace{15cm} \left(\widetilde{H}^{\dagger}L ight)$
Fermionic Triplet	$Y_{\Sigma}^T rac{1}{M_{\Sigma}} Y_{\Sigma}$	$Y^{\dagger}_{\Sigma}rac{1}{ M_{\Sigma} ^2}Y_{\Sigma}$	$\left(\overline{L}\overrightarrow{\tau}\widetilde{H} ight)i D \left(\widetilde{H}^{\dagger}\overrightarrow{\tau}L ight)$
Scalar Triplet	$4Y_{\Delta}rac{\mu_{\Delta}}{ M_{\Delta} ^2}$	$\frac{Y_{\Delta 2 M_{\Delta} ^2}^{\dagger}Y_{\Delta}}{\frac{ \mu_{\Delta} ^2}{ M_{\Delta} ^4}}\\-2\left(\lambda_3+\lambda_5\right)\frac{ \mu_{\Delta} ^2}{ M_{\Delta} ^4}$	$ \left(\begin{array}{c} \left(\widetilde{L} \overrightarrow{\tau} L \right) \left(\overline{L} \overrightarrow{\tau} \widetilde{L} \right) \\ \left(H^{\dagger} \overrightarrow{\tau} \widetilde{H} \right) \left(\overleftarrow{D_{\mu}} \overrightarrow{D^{\mu}} \right) \left(\widetilde{H}^{\dagger} \overrightarrow{\tau} H \right) \\ \left(H^{\dagger} H \right)^{3} $

Can M be close to EW scale, say ~ TeV? M~1 TeV is suggested by electroweak hierarchy problem

M~1 TeV actively searched for in colliders

i.e. Scalar Triplet $\Delta = (\Delta^{++}, \Delta^{+}, \Delta^{0})$ Δ^{++}

Same sign dileptons....~ no SM background

-> m_{Λ} > 136 GeV by CDF

Atlas groups studying searches of Triplet Seesaws (scalar and fermionic)

(Foot-Volkas.....Bajc, Senjanovic))

Is it possible to have

M ~ 1 TeV

with <u>large Yukawas</u> (even O(1))?

It requires to decouple the coefficient **C^{d=5}** of **O^{d=5}**

from **c^{d=6}** of **O^{d=6}**

Notice that all d=6 operators preserve B-L, in contrast to the d=5 operator.

This suggests that, from the point of view of symmetries, it may be natural to have large c^{d=6}, while having small c^{d=5}. Light Majorana m_{v} should vanish:

inversely proportional to a Majorana scale (C^{d=5} ~ 1/M)

- or directly proportional to it

Light Majorana m_v should vanish:

inversely proportional to a Majorana scale
 (C^{d=5} ~ 1/M)

- or directly proportional to it

Ansatz:

When the breaking of L is proportional to a small scale $\mu \ll M$, while $M \sim O(TeV)$, $c^{d=5}$ is suppressed while $c^{d=6}$ is large: $c^{d=5} \sim \frac{\mu}{M^2}$ $c^{d=6} \sim \frac{1}{M^2}$ Light Majorana m_v should vanish:

inversely proportional to a Majorana scale
 (C^{d=5} ~ 1/M)

- or directly proportional to it

Ansatz:

When the breaking of L is proportional to a small scale $\mu \ll M$, while $M \sim O(TeV)$, $c^{d=5}$ is suppressed while $c^{d=6}$ is large: $c^{d=5} \sim f(Y) \frac{\mu}{M^2}$ $c^{d=6} \sim \frac{Y^+Y}{M^2}$

	Effective Lagrangian $\mathcal{L}_{eff} = c_i \mathcal{O}_i$		
Model	$c^{d=5}$	$c_i^{d=6}$	$\mathcal{O}_i^{d=6}$
Fermionic Singlet	$Y_N^T rac{1}{M_N} Y_N$	$Y_N^\dagger rac{1}{ M_N ^2} Y_N$	$\left(\overline{L}\widetilde{H} ight) i \partial \hspace{15cm} \left(\widetilde{H}^{\dagger}L ight)$
Fermionic Triplet	$Y_{\Sigma}^T rac{1}{M_{\Sigma}} Y_{\Sigma}$	$Y^{\dagger}_{\Sigma} rac{1}{ M_{\Sigma} ^2} Y_{\Sigma}$	$\left(\overline{L}\overrightarrow{\tau}\widetilde{H}\right)i D \left(\widetilde{H}^{\dagger}\overrightarrow{\tau}L\right)$
Scalar Triplet	$4Y_{\Delta}rac{\mu_{\Delta}}{ M_{\Delta} ^2}$	$\begin{array}{c}Y_{\Delta}^{\dagger}\frac{1}{2 M_{\Delta} ^{2}}Y_{\Delta}\\\\ \frac{ \mu_{\Delta} ^{2}}{ M_{\Delta} ^{4}}\\ -2\left(\lambda_{3}+\lambda_{5}\right)\frac{ \mu_{\Delta} ^{2}}{ M_{\Delta} ^{4}}\end{array}$	$ \begin{array}{c} \left(\overline{\widetilde{L}} \overrightarrow{\tau} L \right) \left(\overline{L} \overrightarrow{\tau} \widetilde{L} \right) \\ \left(H^{\dagger} \overrightarrow{\tau} \widetilde{H} \right) \left(\overleftarrow{D_{\mu}} \overrightarrow{D^{\mu}} \right) \left(\widetilde{H}^{\dagger} \overrightarrow{\tau} H \right) \\ \left(H^{\dagger} H \right)^{3} \end{array} $

	Effective Lagrangian $\mathcal{L}_{eff} = c_i \mathcal{O}_i$		
Model	$c^{d=5}$	$c_i^{d=6}$	$\mathcal{O}_i^{d=6}$
Fermionic Singlet	$Y_N^T rac{1}{M_N} Y_N$	$Y_N^\dagger rac{1}{\left M_N ight ^2} Y_N$	$\left(\overline{L}\widetilde{H} ight) i \partial \hspace{15cm} \left(\widetilde{H}^{\dagger}L ight)$
Fermionic Triplet	$Y_{\Sigma}^T rac{1}{M_{\Sigma}} Y_{\Sigma}$	$Y^{\dagger}_{\Sigma} rac{1}{ M_{\Sigma} ^2} Y_{\Sigma}$	$\left(\overline{L}\overrightarrow{\tau}\widetilde{H} ight)iD\!\!D\left(\widetilde{H}^{\dagger}\overrightarrow{\tau}L ight)$
Scalar Triplet	$4Y_{\Delta \frac{\mu_{\Delta}}{ M_{\Delta} ^2}}$	$\begin{array}{c}Y_{\Delta}^{\dagger}\frac{1}{2 M_{\Delta} ^{2}}Y_{\Delta}\\\\\frac{ \mu_{\Delta} ^{2}}{ M_{\Delta} ^{4}}\\-2\left(\lambda_{3}+\lambda_{5}\right)\frac{ \mu_{\Delta} ^{2}}{ M_{\Delta} ^{4}}\end{array}$	$ \begin{array}{c} \left(\widetilde{\widetilde{L}} \overrightarrow{\tau} L \right) \left(\overline{L} \overrightarrow{\tau} \widetilde{L} \right) \\ \left(H^{\dagger} \overrightarrow{\tau} \widetilde{H} \right) \left(\overleftarrow{D_{\mu}} \overrightarrow{D^{\mu}} \right) \left(\widetilde{H}^{\dagger} \overrightarrow{\tau} H \right) \\ \left(H^{\dagger} H \right)^{3} \end{array} $
$Y \frac{\mu}{M^2} \qquad \frac{Y^+ Y}{M^2}$			
* The minimal scalar triplet model obeys that ansatz:

In fact, any Scalar mediated Seesaw will give

 $1/(D^2-M^2) \sim -1/M^2 - D^2/M^{4+}....$ $m_v \sim v^2 C^{d=5} \sim 1/M^2$ What about fermionic-mediated Seesaws?

* Singlet fermion seesaws with M~1 TeV also obey it !!! :

 $i.e. \ \textbf{INVERSE SEESAW}$

INVERSE SEESAW texture

Mohapatra, Valle, Glez-Garcia

INVERSE SEESAW texture

INVERSE SEESAW texture

* 3 generation Inverse Seesaw: ν_e , ν_μ , ν_τ , N_1 , N_2 , N_3 Abada et al., Kersten+Smirnov

Experimental information on

$$C^{d=6} \sim \frac{Y^{\dagger}Y}{M^2}$$

from:

--- 4 fermion operators (Scalar triplet seesaw) M_W , W decays...

--- Unitarity corrections (Fermionic seesaws)

Scalar triplet seesaw Bounds on c^{d=6}

Process	Constraint on	Bound $\left(\times \left(\frac{M_{\Delta}}{1 \text{ TeV}}\right)^2\right)$
M_W	$ Y_{\Delta \mu e} ^2$	$< 7.3 imes 10^{-2}$
$\mu^- \to e^+ e^- e^-$	$ Y_{\Delta \mu e} Y_{\Delta e e} $	$< 1.2 imes 10^{-5}$
$\tau^- \to e^+ e^- e^-$	$ Y_{\Delta au e} Y_{\Delta ee} $	$< 1.3 imes 10^{-2}$
$ au^- ightarrow \mu^+ \mu^- \mu^-$	$ Y_{\Delta au\mu} Y_{\Delta\mu\mu} $	$< 1.2 imes 10^{-2}$
$ au^- ightarrow \mu^+ e^- e^-$	$ Y_{\Delta au\mu} Y_{\Delta ee} $	$< 9.3 imes 10^{-3}$
$ au^- ightarrow e^+ \mu^- \mu^-$	$ Y_{\Delta au e} Y_{\Delta\mu\mu} $	$< 1.0 imes 10^{-2}$
$ au^- ightarrow \mu^+ \mu^- e^-$	$ Y_{\Delta au\mu} Y_{\Delta\mu e} $	$< 1.8 imes 10^{-2}$
$ au^- ightarrow e^+ e^- \mu^-$	$ Y_{\Delta au e} Y_{\Delta \mu e} $	$< 1.7 imes 10^{-2}$
$\mu ightarrow e \gamma$	$ \Sigma_{l=e,\mu, au}Y_{\Delta}^{\dagger}_{l\mu}Y_{\Delta el} $	$<4.7 imes10^{-3}$
$ au ightarrow e\gamma$	$ \Sigma_{l=e,\mu, au}Y_{\Delta_{l au}}^{\dagger}Y_{\Delta_{el}} $	< 1.05
$\tau \rightarrow \mu \gamma$	$ \Sigma_{l=e,\mu, au}Y_{\Delta_{l au}}^{\dagger}Y_{\Delta\mu l} $	$< 8.4 imes 10^{-1}$

Scalar triplet seesaw

Combined bounds on c^{d=6}

Combined bounds		
Process	Yukawa	Bound $\left(\times \left(\frac{M_{\Delta}}{1 \text{TeV}} \right)^4 \right)$
$\mu ightarrow e \gamma$	$\left Y_{\Delta \mu \mu}^{\dagger}Y_{\Delta \mu e}+Y_{\Delta au \mu}^{\dagger}Y_{\Delta au e} ight $	$< 4.7 imes 10^{-3}$
$ au ightarrow e\gamma$	$\left Y_{\Delta au au au}Y_{\Delta au au} ight _{\Delta au e}$	< 1.05
$\tau \rightarrow \mu \gamma$	$\left Y_{\Delta au au au}^{\dagger}Y_{\Delta au \mu} ight $	$< 8.4 imes 10^{-1}$

Fermionic seesaws ---> Non unitarity

The complete theory of v masses is unitary.

i.e, a neutrino mass matrix larger than 3x3

• Unitarity violations arise in models for v masses with heavy fermions

Fermion triplet Σ_R \rightarrow YES deviations from unitarity

A general statement...

We have unitarity violation whenever we integrate out <u>heavy fermions</u>:

Fermionic seesaws:

I
$$Y_N Y_N / M^2 (\overline{L} H) \not (H L)$$

II $Y_{\Sigma} Y_{\Sigma} / M^2 (\overline{L} \tau H) \not (H \tau L)$

A flavour dependent rescaling is needed, which is NOT a unitary transformation

_

$$(|NN^{\dagger}|-1)_{lphaeta}\,=\,rac{v^2}{2}\,|c^{d=6}|_{lphaeta}\,=\,rac{v^2}{2}\,|Y^{\dagger}\,rac{1}{|M|}|^2Y_{}|_{lphaeta}$$

In all fermionic Seesaws, the departures from unitarity give directly |C^{d=6}| \rightarrow Worthwhile to analyze neutrino data relaxing the hypothesis of unitarity of the mixing matrix

Antusch, Biggio, Fernández-Martínez, López-Pavón, M.B.G. 06

The general idea.....

$$U = \begin{pmatrix} c_{13}c_{12} & s_{12}c_{13} & s_{13}e^{i\delta} \\ -s_{12}c_{23} - s_{23}s_{13}c_{12}e^{-i\delta} & c_{12}c_{23} - s_{23}s_{13}s_{12}e^{-i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{-i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{-i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{i\alpha} \\ e^{i\beta} \\ 1 \end{pmatrix}$$

$$W^{-} \bigvee_{i} \approx N_{\alpha i} \qquad N = \begin{pmatrix} N_{e1} & N_{e2} & N_{e3} \\ N_{\mu 1} & N_{\mu 2} & N_{\mu 3} \\ N_{\tau 1} & N_{\tau 2} & N_{\tau 3} \end{pmatrix}$$

This affects v oscillation probabilities ...

This affects $\boldsymbol{\nu}$ oscillation probabilities ...

 $\dots \tau$ raw of N remains unconstrained

Unitarity constraints on (NN⁺) from:

- * Near detectors...
 - MINOS, NOMAD, BUGEY, KARMEN
 - * Weak decays...
 - * W decays
 - * Invisible Z width
 - * Universality tests
 - * Rare lepton decays

Unitarity constraints on (NN⁺) from:

- * Near detectors...
 - MINOS, NOMAD, BUGEY, KARMEN
 - * Weak decays...
 - * W decays
 - * Invisible Z width
 - * Universality tests
 - * Rare lepton decays

All in all, as of today, for the Singlet-fermion Seesaws:

$$(\mathrm{NN^{+}-1})_{\alpha\beta} = \frac{v^2}{2} |\mathbf{c^{d=6}}|_{\alpha\beta} = \frac{v^2}{2} |Y_N^{\dagger} \frac{1}{|M_N|^2} Y_N|_{\alpha\beta} \lesssim \begin{pmatrix} 10^{-2} & 7.2 \cdot 10^{-5} & 1.6 \cdot 10^{-2} \\ 7.2 \cdot 10^{-5} & 10^{-2} & 1.1 \cdot 10^{-2} \\ 1.6 \cdot 10^{-2} & 1.1 \cdot 10^{-2} & 10^{-2} \end{pmatrix}$$

→ New CP-violation signals even in the two-family approximation

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

i.e. P (
$$\nu_{\mu} \rightarrow \nu_{\tau}$$
) \neq P ($\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\tau}}$)

→ Increased sensitivity to the moduli |N| in future Neutrino Factories

Fermion-triplet seesaws:

similar - although richer! - analysis

Singlet and triplet Seesaws differ in the the pattern of the Z couplings

Singlet	Triplet
$J^{- {\it CC}}_{\mu}\equiv \overline{I_L}\gamma_{\mu} {\it N} u$	$J_{\mu}^{-{\it CC}}\equiv\overline{I_L}\gamma_\mu{\it N} u$
$J^{ m NC}_{\mu}\equiv rac{1}{2}\overline{ u}\gamma_{\mu}({\it N^{\dagger}}~{\it N}) u$	$J^Z_\mu({\sf neutrinos}) \equiv rac{1}{2} \overline{ u} \gamma_\mu({\it N^\dagger} {\it N})^{-1} u$
	$J^3_\mu({\sf leptons})\equiv rac{1}{2}ar{l}\gamma_\mu(NN^\dagger)^2I$
$\sum_{v=1}^{z} N^{\dagger} N \sum_{v=1}^{v} \sum_{(N^{\dagger} N)^{-1}}^{z} V$	

Bounds on Yukawas type III

 $\begin{array}{c} \mu \rightarrow e\gamma \\ \tau \rightarrow e\gamma \\ \tau \rightarrow \mu\gamma \end{array}$

For $M \approx TeV \rightarrow |Y| < 10^{-2}$

Production @ colliders Ma, Roy 02 Bajc, Nemevsek, Senjanovic 07

→ For the Triplet-fermion Seesaws (type III):

$$(\mathrm{NN^{+}-1})_{\alpha\beta} = \frac{v^{2}}{2} |c^{d=6}|_{\alpha\beta} = \frac{v^{2}}{2} |Y_{\Sigma}^{\dagger} \frac{1}{M_{\Sigma}^{\dagger}} \frac{1}{M_{\Sigma}} Y_{\Sigma}|_{\alpha\beta} \lesssim \begin{pmatrix} 3 \cdot 10^{-3} & < 1.1 \cdot 10^{-6} & < 1.2 \cdot 10^{-3} \\ < 1.1 \cdot 10^{-6} & 4 \cdot 10^{-3} & < 1.2 \cdot 10^{-3} \\ < 1.2 \cdot 10^{-3} & < 1.2 \cdot 10^{-3} \\ < 1.2 \cdot 10^{-3} & < 1.2 \cdot 10^{-3} \end{pmatrix}$$

In summary, for all scalar and fermionic Seesaw models, present bounds:

$$\frac{v^2}{2} |c^{d=6}|_{\alpha\beta} = \frac{v^2}{2} |Y^{\dagger} \frac{1}{M^2} Y|_{\alpha\beta} \lesssim 10^{-2}$$

$$|Y| \lesssim 10^{-1} \frac{M}{1 \, TeV} \quad \text{or stronger}$$

Conclusions (exp.)

* MiniBoone shows, for the first time, that only 3 vs is OK

..... Is the low-energy excess hiding physics?

* Minos update of atmospheric data

.....walking towards θ₁₃ and % precision era

- * d= 6 operators discriminate among models of Majorana vs.
 - we have determined them for the 3 families of Seesaw models.

Conclusions (th)

* d= 6 operators discriminate among models of Majorana νs.
- we have determined them for the 3 families of Seesaw models.

* While the d=5 operator violates B-L, all d=6 ops. conserve it

--> natural ansatz: $c^{d=5} \sim \mu/M^2$,

allowing M~TeV and large Yukawa couplings (even O(1)).

Conclusions (th)

* d= 6 operators discriminate among models of Majorana νs.
- we have determined them for the 3 families of Seesaw models.

* While the d=5 operator violates B-L, all d=6 ops. conserve it

--> natural ansatz: $c^{d=5} \sim \mu / M^2$,

allowing M~TeV and large Yukawa couplings (even O(1)).

•d=6 operator crucial: if observed at low energies, only resonant leptogenesis is possible

Conclusions (th)

* d= 6 operators discriminate among models of Majorana νs.
- we have determined them for the 3 families of Seesaw models.

* While the d=5 operator violates B-L, all d=6 ops. conserve it

--> natural ansatz: $c^{d=5} \sim \mu/M^2$,

allowing M~TeV and large Yukawa couplings (even O(1)).

•d=6 operator crucial: if observed at low energies, only resonant leptogenesis is possible

* $c^{d=6} \sim Y^+Y/M^2$ bounded from 4- Ψ interactions + unitarity deviations

 $\nu_{\mu} - \nu_{\tau}$ CP-asymmetry may be a clean probe of the new phases of seesaw scenarios.

-> Keep tracking these deviations in the future. They are excellent signals of new physics.

Back-up slides

Low-energy effective theory

After EWSB, in the flavour basis:

$$L = \frac{1}{2} \left(i \overline{v_{\alpha}} \phi K_{\alpha\beta} v_{\beta} - \overline{v_{\alpha}}^{c} M_{\alpha\beta} v_{\beta} + h.c. \right) + \frac{g}{\sqrt{2}} \left(W_{\mu}^{\dagger} \overline{l_{\alpha}} \gamma^{\mu} P_{L} v_{\alpha} + h.c. \right)$$

 $M_{\alpha\beta} \rightarrow \text{diagonalized} \rightarrow \text{unitary transformation}$ $K_{\alpha\beta} \rightarrow \text{diagonalized and normalized} \rightarrow \text{unitary transf.} + \text{rescaling}$

In the mass basis:

$$L = \frac{1}{2} \left(i \overline{v_i} \partial v_i - \overline{v}^c{}_i m_{ii} v_i \right)$$

N non-unitary

A general statement...

We have unitarity violation whenever we integrate out <u>heavy fermions</u>:

It connects fermions with opposite chirality \rightarrow mass term

There's a γ^{μ} : it connects fermions with the same chirality \rightarrow <u>correction to the kinetic terms</u>

The propagator of a <u>scalar field</u> does not contain $\gamma^{\mu} \rightarrow$ if it generates neutrino mass, <u>it cannot correct the kinetic term</u>

$$1/(D^2-M^2) \sim -1/M^2 - D^2/M^{4+\dots}$$

Our analysis will also apply to ``non-standard" or ``exotic" neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

They add 4-fermion exotic operators to production or detection or propagation in matter

3 generation Inverse Seesaw

$${f v}_{e}$$
 , ${f v}_{\mu}$, ${f v}_{ au}$, ${f N}_{1}$, ${f N}_{2}$, ${f N}_{3}$

$$\left(\begin{array}{ccccccccc} 0 & 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & d & 0 & 0 \\ 0 & 0 & 0 & e & 0 & 0 \\ c & d & e & f & g & a \\ 0 & 0 & 0 & g & b & 0 \\ 0 & 0 & 0 & a & 0 & 0 \end{array}\right), \qquad \left(\begin{array}{cccccccccccccccccccc} 0 & 0 & 0 & c & \varepsilon_1 & \varepsilon_2 \\ 0 & 0 & 0 & c & \varepsilon_1 & \varepsilon_2 \\ 0 & 0 & 0 & d & \varepsilon_3 & \varepsilon_4 \\ 0 & 0 & 0 & e & \varepsilon_5 & \varepsilon_6 \\ c & d & e & f & g & a \\ \varepsilon_1 & \varepsilon_3 & \varepsilon_5 & g & b & \varepsilon_7 \\ \varepsilon_2 & \varepsilon_4 & \varepsilon_6 & a & \varepsilon_7 & \varepsilon_8 \end{array}\right)$$

Abada et al. Kersten+Smirnov

and also similar extensions of the fermionic triplet Seesaw
M(inimal) U(nitarity) V(iolation) :

$$L = i\overline{v_i}\partial v_i + \overline{v_i}m_{ii}v_i - \frac{g}{\sqrt{2}}\left(W_{\mu}^{\dagger}\overline{l_{\alpha}}\gamma^{\mu}P_L N_{\alpha i}v_i + h.c.\right) - \frac{g}{\cos\theta_W}\left(Z_{\mu}\overline{v_i}\gamma^{\mu}P_L (N^{\dagger}N)_{ij}v_j + h.c.\right) + \dots$$

with only 3 light $\boldsymbol{\nu}$

 $W^{-} V_{i} \approx N_{\alpha i} \qquad Z \qquad V_{i} \approx (N^{+}N)_{j}$

N elements from oscillations & decays

Μυν		.7589	.4565	<.20
without unitarity OSCILLATIONS +DECAYS	N =	.1955	.4274	.5782
		.1356	.3675	.5482
•	Antusch, Biggio, Fernández-Martínez,			
3 0		Lopez-ravon,	, M.D.G. 00	
		70 99	17 61	< 20
with unitarity OSCILLATIONS	-	./900	.4701	× .20
	0 -	.1952	.42/3	.5882
		.2053	.4474	.5681

M. C. Gonzalez Garcia hep-ph/0410030

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

If we parametrize $N \approx (1 + \varepsilon) U_{PMNS}$ with $\varepsilon = -\frac{v^2}{4} c^{d=6}$ $P_{\alpha\beta} \approx \left| 2\varepsilon_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$ If L/E small

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

If we parametrize $N \approx (1 + \varepsilon) U_{PMNS}$ with $\varepsilon = -\frac{v^2}{4} c^{d=6}$ $P_{\alpha\beta} \approx \left| 2\varepsilon_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$ If L/E small

$$P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right) - 2\mathrm{Im}(\mathbf{\epsilon}_{\alpha\beta})\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{2E}\right) + 4|\mathbf{\epsilon}_{\alpha\beta}|^2$$

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

If we parametrize $N \approx (1 + \varepsilon) U_{PMNS}$ with $\varepsilon = -\frac{v^2}{4} c^{d=6}$ $P_{\alpha\beta} \approx \left| 2\mathbf{\mathcal{E}}_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$ If L/E small $P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right) - 2\mathrm{Im}(\mathbf{\epsilon}_{\alpha\beta})\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{2E}\right) + 4|\mathbf{\epsilon}_{\alpha\beta}|^2$ SM

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

If we parametrize $N \approx (1 + \varepsilon) U_{PMNS}$ with $\varepsilon = -\frac{v^2}{4} c^{d=6}$ $P_{\alpha\beta} \approx \left| 2\mathbf{\mathcal{E}}_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$ If L/E small $P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right) - 2\mathrm{Im}(\mathbf{\epsilon}_{\alpha\beta})\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{2E}\right) + \left(4|\mathbf{\epsilon}_{\alpha\beta}|^2\right)$ Zero dist. SM effect

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

If we parametrize $N \approx (1 + \varepsilon) U_{PMNS}$ with $\varepsilon = -\frac{v^2}{4} c^{d=6}$ $P_{\alpha\beta} \approx \left| 2\mathbf{\mathcal{E}}_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$ If L/E small $P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right) + 2\mathrm{Im}(\mathbf{\epsilon}_{\alpha\beta})\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{2E}\right) + \left(4|\mathbf{\epsilon}_{\alpha\beta}|^2\right)$ Zero dist. CP violating SM effect interference

Measuring non-unitary phases

In
$$P_{\mu\tau}$$
 there is no $\sin heta_{13}$ or Δ_{12} suppression:

$$P_{\mu\tau} - P_{\overline{\mu}\overline{\tau}} = -4 \operatorname{Im}(\varepsilon_{\mu\tau}) \sin(2\theta_{23}) \sin\left(\frac{\Delta m_{23}^2 L}{2E}\right)$$

→ New CP-violation signals even in the two-family approximation

i.e. P (
$$\nu_{\mu} \rightarrow \nu_{\tau}$$
) \neq P ($\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\tau}}$)

→ New CP-violation signals even in the two-family approximation

i.e. P (
$$\nu_{\mu} \rightarrow \nu_{\tau}$$
) \neq P ($\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\tau}}$)

The effects of non-unitarity...

... appear in the interactions

This affects weak decays...

$$\Gamma = \Gamma_{SM} \sum_{i} |N_{\alpha i}|^{2} = \Gamma_{SM} \left(N N^{+} \right)_{\alpha \alpha} \qquad \Gamma = \Gamma_{SM} \sum_{ij} |(N^{+} N)_{j}|^{2}$$

... and oscillation probabilities...

This affects weak decays...

$$\Gamma = \Gamma_{SM} \sum_{i} |N_{\alpha i}|^{2} = \Gamma_{SM} \left(N N^{+} \right)_{\alpha \alpha} \qquad \Gamma = \Gamma_{SM} \sum_{ij} \left| \left(N^{+} N \right)_{j} \right|^{2}$$

This affects weak decays...

$$\Gamma = \Gamma_{SM} \sum_{i} |N_{\alpha i}|^{2} = \Gamma_{SM} \left(N N^{+} \right)_{\alpha \alpha} \qquad \qquad \Gamma = \Gamma_{SM} \sum_{ij} |(N^{+} N)_{j}|^{2}$$

... and oscillation probabilities...

Zero-distance effect at near detectors:

$$P(v_{\alpha} \rightarrow v_{\beta}; 0) \propto \left| \sum_{i} N_{\alpha i}^{*} N_{\beta i} \right|^{2} \neq \delta_{\alpha \beta}$$

This affects weak decays...

$$\Gamma = \Gamma_{SM} \sum_{i} |N_{\alpha i}|^{2} = \Gamma_{SM} \left(N N^{+} \right)_{\alpha \alpha} \qquad \qquad \Gamma = \Gamma_{SM} \sum_{ij} |(N^{+} N)_{j}|^{2}$$

... and oscillation probabilities...

Non-Unitary Mixing Matrix

$$P_{\alpha\beta}(E,L) = \frac{\left|\sum_{i}^{n} N_{\alpha i}^{*} e^{iP_{i}L} N_{\beta i}\right|^{2}}{\left(NN^{\dagger}\right)_{\alpha\alpha} \left(NN^{\dagger}\right)_{\beta\beta}}$$
Zero-distance effect at near detectors:

$$P(v_{\alpha} \rightarrow v_{\beta}; 0) \propto \left|\sum_{i}^{n} N_{\alpha i}^{*} N_{\beta i}\right|^{2} \neq \delta_{\alpha\beta}$$

$$W^{\dagger} W^{\dagger} W^{\dagger} V_{\gamma} V_{\gamma}$$

$$\frac{In \ matter}{i \frac{d}{dt} \begin{pmatrix} v_{e} \\ v_{\mu} \end{pmatrix}} = \left[N^{*} \begin{pmatrix} E_{1} \ 0 \\ 0 \ E_{2} \end{pmatrix} (N^{*})^{1} + \begin{pmatrix} (V_{CC} - V_{NC}) \sum_{i} |N_{ei}|^{2} & -V_{NC} \sqrt{\frac{\sum_{i} |N_{\mu i}|^{2}}{\sum_{i} |N_{ei}|^{2}}} \sum_{i} N^{*}_{ei} N_{\mu i} \\ (V_{CC} - V_{NC}) \sqrt{\frac{\sum_{i} |N_{ei}|^{2}}{\sum_{i} |N_{\mu i}|^{2}}} \sum_{i} N^{*}_{ei} N_{\mu i} & -V_{NC} \sum_{i} |N_{\mu i}|^{2} \end{pmatrix} \right] \begin{pmatrix} v_{e} \\ v_{\mu} \end{pmatrix}$$

Number of events

$$n_{ev} \sim \int dE \frac{d\Phi_{\alpha}(E)}{dE} P_{\alpha\beta}(E,L) \sigma_{\beta}(E) \varepsilon(E)$$

v produced and detected in CC

$$\left\{ \begin{array}{l} \frac{d\Phi_{\alpha}}{dE} \sim \frac{d\Phi_{\alpha}^{SM}}{dE} \left(NN^{+} \right)_{\alpha\alpha} \\ \sigma_{\beta} \sim \sigma_{\beta}^{SM} \left(NN^{+} \right)_{\beta\beta} \end{array} \right.$$

$$n_{ev} \sim \int dE \frac{d\Phi_{\alpha}^{SM}(E)}{dE} (NN^{+})_{\alpha\alpha} P_{\alpha\beta}(E,L) (NN^{+})_{\beta\beta} \sigma_{\beta}^{SM}(E) \varepsilon(E)$$

$$\hat{P}_{\alpha\beta}(E,L) = \left| \sum_{i} N_{\alpha i}^{*} e^{iP_{i}L} N_{\beta i} \right|^{2}$$
Exceptions:

Exceptions:

- measured flux
- leptonic production mechanism
- detection via NC

N elements from oscillations: *µ*-row

Atmospheric + K2K: $\Delta_{12} \approx 0$

$$\hat{P}(v_{\mu} \rightarrow v_{\mu}) \cong (N_{\mu 1}|^{2} + |N_{\mu 2}|^{2}) + |N_{\mu 3}|^{4} + 2(N_{\mu 1}|^{2} + |N_{\mu 2}|^{2}) N_{\mu 3}|^{2} \cos(\Delta_{23})$$

1. Degeneracy $\left|N_{\mu 1}\right|^{2} + \left|N_{\mu 2}\right|^{2} \iff \left|N_{\mu 3}\right|^{2}$

2.
$$|N_{\mu 1}|^2$$
, $|N_{\mu 2}|^2$
cannot be disentangled

N elements from oscillations: *e*-row

CHOOZ
$$P(\overline{v_e} \to \overline{v_e}) \cong (N_{e1}|^2 + |N_{e2}|^2) + |N_{e3}|^4 + 2(N_{e1}|^2 + |N_{e2}|^2) N_{e3}|^2 \cos(\Delta_{23})$$

KamLAND: $\hat{P}(\overline{v_e} \to \overline{v_e}) \approx |N_{e1}|^4 + |N_{e2}|^4 + |N_{e3}|^4 + 2|N_{e1}|^2|N_{e2}|^2 \cos(\Delta_{12})$

N elements from oscillations only

without unitarity
OSCILLATIONS
MUV
$$|N| = [(|N_{\mu}1|^2 + |N_{\mu}2|^2)^{1/2} = 0.57 - 0.86]$$
 .57-.86
 $?$? ?

3σ

with unitarity OSCILLATIONS

$$|U| = \begin{bmatrix} .79 - .89 & .47 - .61 & \checkmark .20 \\ .19 - .52 & .42 - .73 & .58 - .82 \\ .20 - .53 & .44 - .74 & .56 - .81 \end{bmatrix}$$

M. C. Gonzalez Garcia hep-ph/0410030

Unitarity constraints on (NN⁺) from:

* Near detectors...

- MINOS: $(NN^{\dagger})_{\mu\mu} = 1 \pm 0.05$
- BUGEY: $(NN^{\dagger})_{ee} = 1 \pm 0.04$
- NOMAD: $(NN^{\dagger})_{\mu\tau} < 0.09$ $(NN^{\dagger})_{e\tau} < 0.013$
- KARMEN: $(NN^{\dagger})_{\mu e} < 0.05$

* Weak decays...

• W decays

$$\rightarrow \frac{(NN^+)_{\alpha\alpha}}{\sqrt{(NN^+)_{ee}}\sqrt{(NN^+)_{\mu\mu}}}$$

 Universality tests

 $\rightarrow \frac{(NN^+)_{\alpha\alpha}}{(NN^+)_{\alpha\alpha}}$

• Invisible Z $\rightarrow \frac{\sum_{ij} (N^+ N)_{ij}}{\sqrt{(NN^+)_{ee}} \sqrt{(NN^+)_{\mu\mu}}}$ • Rare leptons decays

 $\rightarrow \frac{\left| \left(NN^{+} \right)_{\beta \alpha} \right|^{2}}{\left(NN^{+} \right) \left(NN^{+} \right)_{\beta \alpha}}$

$$|NN^{\dagger}| \approx \begin{pmatrix} 0.994 \pm 0.005 & < 7.2 \cdot 10^{-5} & < 1.6 \cdot 10^{-2} \\ < 7.2 \cdot 10^{-5} & 0.995 \pm 0.005 & < 1.1 \cdot 10^{-2} \\ < 1.6 \cdot 10^{-2} & < 1.1 \cdot 10^{-2} & 0.995 \pm 0.005 \end{pmatrix}$$

At 90% CL

→ |N| is unitary at the % level

In the future...

TESTS OF UNITARITY (90%CL)

Rare leptons decays (present)

•
$$\mu \to e\gamma (\sum N_{ei} N_{\mu i}^*)^2 < 7.2 \cdot 10^{-5}$$

• $\tau \rightarrow e\gamma \qquad |\sum_{i} N_{ei} N_{ii}^{*}|^{2} < 0.016$

•
$$\tau \rightarrow \mu \gamma \qquad |\sum_{i} N_{\mu i} N_{\pi i}^{*}|^{2} < 0.013$$

ZERO-DISTANCE EFFECT Near detector at a v factory

•
$$v_e \rightarrow v_{\mu} |\sum_{i} N_{ei} N_{\mu i}^*|^2 < 2.3 \cdot 10^{-4}$$

• $v_e \rightarrow v_{\tau} |\sum_{i} N_{ei} N_{\pi i}^*|^2 < 2.9 \cdot 10^{-3}$
• $v_{\mu} \rightarrow v_{\tau} |\sum_{i} N_{\mu i} N_{\pi i}^*|^2 < 2.6 \cdot 10^{-3}$
R
A
like

Measuring unitarity deviations

The bounds on

$$\left|NN^{\dagger}\right| = \left|\left(1+\varepsilon\right)^{2}\right| \approx \left|1+2\varepsilon\right|$$

Also apply to \mathcal{E}

$$\begin{split} \left| \varepsilon \right| \approx \begin{pmatrix} <2.5 \cdot 10^{-3} & <3.6 \cdot 10^{-5} & <8.0 \cdot 10^{-3} \\ <3.6 \cdot 10^{-5} & <2.5 \cdot 10^{-3} & <5.0 \cdot 10^{-3} \\ <8.0 \cdot 10^{-3} & <5.0 \cdot 10^{-3} & <2.5 \cdot 10^{-3} \end{pmatrix} \end{split}$$

The constraints on $\mathcal{E}_{e\mu}$ from $\mu \rightarrow e \gamma$ are very strong

We will study the sensitivity to the CP violating terms $\mathcal{E}_{e\tau}$ and $\mathcal{E}_{\mu\tau}$ in $P_{e\tau}$ and $P_{\mu\tau}$

Measuring unitarity deviations

In $P_{e\tau}$ the CP violating term is supressed by

WMatter Standard

$\mathbf v$ masses beyond the SM

\star Other realizations

• radiative mechanisms: ex.) 1 loop:

• SUSY models with R-parity violation

- Frigerio
- Models with large extra dimensions: i.e., v_R are Kaluza-Klein replicas

$$\psi \supset v_R$$
 SM Dirac mass suppressed by $(2\pi R)^{d/2}$

Unitarity in the quark sector

Quarks are detected in the final state \rightarrow we can directly measure $|V_{ab}|$

With V_{ab} we check unitarity conditions: ex: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0008 \pm 0.0011$

 \rightarrow Measurements of V_{CKM} elements relies on U_{PMNS} unitarity

• decays \rightarrow only (NN^{\dagger}) and $(N^{\dagger}N)$

With leptons:

- N elements \rightarrow we need oscillations
 - to study the unitarity of N: no assumptions on V_{CKM}