Progress in SUSY breaking

SAA, C-S Chu, J.Jaeckel, V.V.Khoze, hep-th/0610334;

SAA, J.Jaeckel, V.V.Khoze, hep-th/0611130;

SAA, V.V.Khoze, hep-th/0701069;

SAA, C.Durnford, J.Jaeckel, V.V.Khoze, arXiv/0707.2958

Progress in SUSY breaking - p

Outline

- 1. Inevitability of Metastability: the Nelson-Seiberg theorem
- 2. ISS metastable SUSY breaking
- 3. Cosmological properties: why the early Universe prefers them
- **4.** More minimal mediation: SUSY breaking with spontaneous *R*-symmetry breaking

• • •

Inevitability of metastability

Progress in SUSY breaking – p.

Prehistory (≤ 2006)

Dynamical SUSY Breaking (DSB). N=1 superpotentials augmented by dynamically generated term from strongly coupled gauge theory:

 $W = W_{cl} + W_{dyn}$

Progress in SUSY breaking – p

Maybe the picture is more like

(Intriligator, Seiberg, Shih hep-th/0602239)

- Consider low-energy, calculable models of SUSY breaking
- The potential is $V = |F_i|^2 = |\frac{\partial W}{\partial \Phi_i}|^2$
- Q: When is SUSY broken? i.e. when does $F_i = 0$ not have solutions for all *i*?
- A: (Nelson-Seiberg) In a *generic theory,* when there is an *R*-symmetry.

$$\begin{split} \Phi_i & \to e^{iR_i\alpha} \Phi_i \\ \theta & \to e^{i\alpha} \theta \\ W & \to e^{-2i\alpha} W \end{split}$$

Progress in SUSY breaking

But gaugino mass terms $M_{\lambda}\lambda^{\alpha}\lambda_{\alpha}$ have non-zero *R*-charge (since $W_{\alpha} = \lambda_{\alpha} + \ldots$, and $\mathcal{L}_{gauge} = \int d^2\theta W_{\alpha}W^{\alpha}$)

Non-zero gaugino masses require both *R*-symmetry and SUSY breaking but these are mutually exclusive!

Option 1: explicit *R* breaking

 $W = W_{R-sym} + \varepsilon W_{R-breaking}$

A global SUSY minimum develops $\mathcal{O}(1/\varepsilon)$ away in field space, with $M_\lambda \propto \varepsilon$

Option 2: spontaneous R breaking

- How to do it?
- The massless R-axion?

To give the axion a mass need additional *R*-symmetry breaking $\varepsilon W_{R-breaking}$, but now M_{λ} is independent of ε

Corollary: the Universe is metastable!

•

ISS metastable models

• • • • • • • •

ISS meta-stable models

Content of the microscopic "electric model" (Intriligator, Seiberg, Shih hep-th/0602239)

$$N = 1$$
 gauge $SU(N_c)$
mesons $Q^j \tilde{Q}_j$; $i, j = 1 \dots N_f$
fundamental electric quarks Q_i^a ; $a = 1 \dots N_c$
antifundamentals (Dirac mass m_Q) \tilde{Q}_a^i

If the beta function is negative $\hat{b}_0 = 3N_c - N_f > 0$ then the Wilsonian gauge coupling

$$e^{-8\pi^2/\hat{g}^2(E)} = \left(\frac{E}{\hat{\Lambda}}\right)^{-\hat{b}_0}$$

is strongly coupled in the IR ($\hat{\Lambda}$ is the Landau pole).

ISS meta-stable models

For certain values of parameters a Seiberg dual exists in the IR Content of the macroscopic "magnetic model"

N=1 gauge	SU(N)	$N = N_f - N_c$
mesons	Φ^j_i	; $i, j = 1 \dots N_f$
fundamental magnetic quarks	$arphi^a_i$; $a = 1 \dots N$
antifundamentals	$ ilde{arphi}_a^i$	

Exists if $b_0 = 3N - N_f < 0$ so the Wilsonian coupling is runs to weak coupling in the IR.

ISS meta-stable models

Thus we require

$$N_c + 1 \le N_f < \frac{3}{2}N_c$$

Lowest values are $N_c = 5$, $N_f = 7$. Assume minimal Kahler potential $K = \varphi \bar{\varphi} + \tilde{\varphi} \bar{\tilde{\varphi}} + \Phi \bar{\Phi}$

Characteristics of the IR theory

The tree level superpotential of the theory is an O'Raifeartaigh model and breaks SUSY!

$$W_{cl} = h \operatorname{Tr}_{N_f}(\varphi \Phi \tilde{\varphi}) - h \mu^2 \operatorname{Tr}_{N_f} \Phi$$

where $\mu^2 \approx m_Q \Lambda$. The rank condition gives $|vac\rangle_+$:

$$F_{\Phi_i^i} = h\left(\varphi_i . \tilde{\varphi}^j - \mu^2 \delta_i^j\right) \neq 0$$

cannot be satisfied since $\varphi_i . \tilde{\varphi}^j$ has rank $N = N_f - N_c < N_f$.

Characteristics of the IR theory

Metastable vacuum characterized by

$$\langle \varphi \rangle = \langle \tilde{\varphi} \rangle = \mu \begin{pmatrix} \mathbf{1}_N \\ \mathbf{0}_{N_f - N} \end{pmatrix} ; \langle \Phi \rangle = \mathbf{0}$$

 $V_+ = (N_f - N) |h^2 \mu^4|$

Progress in SUSY breaking -

Can also be shown (ISS) that there are no tachyons at one loop Note that the SU(N) theory is completely Higgsed near the origin

And the SUSY preserving minima?

Consider giving a VEV to Φ ...

• The non-perturbative contribution to superpotential is determined by *integrating out heavy* φ *and* $\tilde{\varphi}$ *modes;*

 $W = W_{cl} + W_{dyn}$

$$W_{dyn} = N\left(\frac{h^{N_f} \det_{N_f} \Phi}{\Lambda^{N_f - 3N}}\right)^{\frac{1}{N}}$$

Progress in SUSY breaking – p

And the SUSY preserving minima?

SUSY preserving minima $|vac\rangle_0$ at

$$\begin{aligned} \langle \varphi \rangle &= \langle \tilde{\varphi} \rangle = 0 \; ; \; \langle \Phi \rangle = \Phi_0 \mathbf{1}_{N_f} \\ \Phi_0 &= \mu \left(h \epsilon^{\frac{N_f - 3N}{N_f - N}} \right)^{-1} \gg \mu \\ \epsilon &= \mu / \Lambda \end{aligned}$$

Have

 $\Lambda \gg \overline{\Phi_0} \gg \overline{\mu}$

so the minima are below Λ but the potential is very shallow

Progress in SUSY breaking – p.

And the SUSY preserving minima?

• There are actually N_c SUSY preserving vacua differing by phase $e^{2\pi i/N_c}$ as required by Witten index of the microscopic theory

Why is this interesting?!

- The metastable potential long lived: $S_4 \sim 2\pi^2 \frac{\Phi_0^4}{V_+} = 2\pi^2 \frac{\Phi_0^4}{h^2 u^4}$
- The form of the O'Raifeartaigh IR superpotential is explained
- Theorem (Nelson-Seiberg): Breaking SUSY → R-symmetry →massless gauginos or R-axion. These models evade it by having SUSY preserving vacua.

Cosmological properties

• • • • • •

(SAA, Jaeckel, Khoze hep-th/0610334)

Progress in SUSY breaking

Potential at finite temperature along direction Φ is (Dolan, Jackiw)

$$V_T(\Phi) = V_{T=0}(\Phi) + \frac{T^4}{2\pi^2} \sum_i \pm n_i \int_0^\infty \mathrm{d}q \, q^2 \ln\left(1 \mp \exp(-\sqrt{q^2 + m_i^2(\Phi)/T^2})\right)$$

To first approximation only "light" ($m_i(\Phi)^2 \ll T^2$) states contribute

$$V_T - V_{T=0} = -\frac{\pi^2 g_* T^4}{90}$$
$$g_* = n_{B_{light}} + \frac{7}{8} n_{F_{light}}$$

If $\mu \ll T \ll \Phi_0$ have

$$n_{B_{light}} = n_{F_{light}} = 4NN_F ; \Phi = 0$$

$$n_{B_{light}} = n_{F_{light}} = 0 ; \Phi = \Phi_0$$

For now take all MSSM and gauge states as "light".

Conclusion: for large enough T

 $V_+(T) < V_0(T)$

This is a result of dynamical restoration of SUSY - have to integrate out flavours to reverse sign of β -function.

•

Progress in SUSY breaking – p. 2

The various temperatures

- The vacua become degenerate at $T_{degen} \sim h\mu$
- Bubble nucleation is never an important process in the transition $|vac_0\rangle \rightarrow |vac_+\rangle$
- The bump disappears at very low temperatures, $T_{crit} \sim \mu$, because of the shallowness and the confinement in $|vac_0\rangle$.
- Rolls to origin and is damped there because of coupling $h\varphi\Phi\tilde{\varphi}$ and couplings to messengers and/or MSSM.
- Remains trapped at origin at later times (Fischler, Kaplunovsky, Krishnan, Mannelli, Torres hep-th/0611018, Craig, Fox, Wacker, hep-th/0611006, SAA, Jaeckel, Khoze hep-th/0611030).

A sufficient bound on T_R

The Universe always ends up in the metastable minimum, if ISS sector is in thermal equilibrium and

$$T_{crit} \sim \mu \lesssim T_R \lesssim \Lambda$$

Progress in SUSY breaking -

More minimal mediation

• • • • • • • •

Progress in SUSY breaking – p. 2

- First note that even though *R*-symmetry is explicitly broken, $M_{\lambda} = 0$ in metastable minimum.
- How to generate an R-breaking M_{λ} without destabilizing? For example, consider adding explicit *R*-symmetry breaking: *R*-messengers called *f*. These would generate gaugino masses, if $W \supset Tr(\Phi)f.\tilde{f} - m_R f.\tilde{f}$

Progress in SUSY breaking

But global SUSY now restored at

$$\langle f.\tilde{f} \rangle = h\mu^2 ; \ Tr(\langle \Phi \rangle) = m_R$$

 This is the approach of most, e.g. Aharony, Seiberg and Murayama, Nomura

Consider "baryon-deformed" ISS:

$$W = \Phi_{ij}\varphi_i.\tilde{\varphi_j} - Tr(\mu^2\Phi) + m\varepsilon_{ab}\varepsilon_{rs}\varphi_r^a\varphi_s^b$$

where r, s = 1, 2 are the 1st and second generation numbers only. The last term can also be written as $m \det \varphi$.

Progress in SUSY breaking

- We will use φ and $\tilde{\varphi}$ to mediate to gauginos so let $N_f = 7$ and gauge $SU(5)_f \supset G_{SM}$ factor
- take $\mu_{ij}^2 = diag\{\mu_2^2 \mathbf{I_2}, \, \mu_5^2 \mathbf{I_5}\}$

As prescribed by Shih (hep-th/0703196) the model has an R-symmetry with $R \neq 0, 2...$

- Note: runaway to broken SUSY with $\tilde{\phi} \to \infty$ and $\phi. \tilde{\phi} = \mu_2^2$
- The Coleman-Weinberg potential stabilizes the "runaway" $\tilde{\phi}$ direction:

Note that m can be linked to irrelevant operators in electric theory, (but we will treat it as a free parameter)

$$B_{Mag}\Lambda^{-N} = B_{Elec}\Lambda^{-N_c} \rightarrow$$
$$m \sim \frac{\Lambda^3}{M_X^2}$$

- Define $X = \chi \mathbf{I_5}$ and $Y = \eta \mathbf{I_2}$ and $\tilde{\phi} = \xi \mathbf{I_2}$
- Taking $m \sim \mu_2 \sim \mu_5$, the Coleman-Weinberg potential gives $\langle \chi \rangle, \sqrt{F_{\chi}} \sim \mu_2$: Contours of $V(\chi, \xi)$;

Gaugino mass is now

$$M_{\lambda} \approx \frac{g_A^2}{16\pi^2} \chi \frac{\hat{\mu}^2}{\mu^2}$$

Progress in SUSY breaking – p.

Scalar masses can be much larger (don't depend on *R*-symmetry breaking:

$$M_{scalar} \sim \frac{g_A^2}{16\pi^2} \hat{\mu}$$

The deformation m takes phenomenology continuously from gauge-mediation-like to "split-SUSY-like"

Two issues: the R-axion

- Can be solved because W_{np} is an explicit breaking \rightarrow mass.
- The *R*-axion is the phase of the field that spontaneously breaks the symmetry; i.e. $\eta = |\eta|e^{2i\frac{a_R}{f_R}}$; $\chi = |\chi|e^{2i\frac{a_R}{f_R}}$
- In our case $f_R \sim \mu_{2,5}$
- Axion mass arises from cross term in

$$V \supset 25 \left| \langle \eta \rangle \langle \chi \rangle^{\frac{3}{2}} \exp\left(5i\frac{a_R}{\langle \eta \rangle}\right) \Lambda^{-\frac{1}{2}} - \mu_5^2 \right|^2$$
$$= 25 \left[\langle \eta \rangle^2 \langle \chi \rangle^3 + \mu_5^4 + 2\mu_5^2 \langle \eta \rangle \langle \chi \rangle^{\frac{3}{2}} \Lambda^{-\frac{1}{2}} \cos\left(5i\frac{a_R}{\langle \eta \rangle}\right) \right],$$
$$m_{a_R} \sim 25 \mu (\mu/\Lambda)^{\frac{1}{4}} \gtrsim 100 MeV$$

$$\mu/\Lambda\gtrsim 10^{-24}$$

Two issues: Landau poles

Since the additional fields are in SU(5) multiplets, the beta functions of the MSSM gauge couplings are modified universally as

 $b_A = b_A^{(MSSM)} - 9$

The SM gauge couplings at a scale $Q > \mu$ in our model are therefore related to the traditional MSSM ones as

$$\alpha_A^{-1} = (\alpha_A^{-1})^{(MSSM)} - \frac{9}{2\pi} \log(Q/\mu)$$
$$\frac{\Lambda^{(MSSM)}}{\mu} \sim 10^5$$

Our solution: Both the MSSM and the ISS sector are magnetic duals!

Progress in SUSY breaking – p.

Summary

- Metastability inevitable for low energy SUSY breaking
- Metastable SUSY breaking vacua are preferred in early Universe by thermal effects
- Both are a feature of dynamical restoration of SUSY generic
- Required temperatures are only $T_R \sim \mu$
- Extremely simple model of direct mediation from baryon-deformed ISS
- Phenomenology is anywhere between gauge-mediation and split-SUSY
- Landau pole in MSSM \rightarrow electric dual of MSSM?