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Jet algorithms at the hadron level

® For some events, the jet structure CDF Run Il events
is very clear and there’s little Raw Jet PT [GeV/c] Event 1222318 Run 152507
ambiguity about the assignment e e 582

of towers to the jet w0

® But for other events, there is
ambiguity and the jet algorithm
must make decisions that impact
precision measurements

® |f comparison is to hadron-level
Monte Carlo, then hope is that
the Monte Carlo will reproduce all
of the physics present in the data el Reo.7
—+ MidPoint R=0.7

and influence of jet algorithms 423
can be understood

+ more difficulty when
comparing to parton level
calculations

® |deal is for analyses to be

done with multiple algorithms
to allow for cross-checks

Only towers with E; > 0.5 GeV are shown



CDF Run 2

® CDF has results with

Midpoint algorithm from
Run 2 extending over a
much larger kinematic
region than Run |

“Hard” Scattering
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Figure 43. Schematic cartoon of a 2 — 2 hard-scattering event.
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Corrections to parton level

Calorimeter-level jets ] ) )
| [1 UE and hadronization effects are in the

opposite directions

1.5
0 -
5 5 1.4} Parton to Hadron Level Corrections
= == = E e Underlying Event
(] Voo Q 1.3_— . !
\\\ ' v Q@ S e Hadronization
i b E 1.2:_ ‘:_
Hadron-level jets : 8 i i Total
Hadronization -1 = 1‘1-,____ ----- e eeeaneeemeeeneeesteserraeennieean
0.9 N | JET
Parton-level jets 0.8f 01<|¥Y™ [<07
0.7F
o6 Lo
0 100 200 300 400 500 600 700
P1T [GeV/c]
S WS [1  With R=0.7, the UE effect is larger than
9,9" 3 the hadronzation effects.
B ~10% in cross section at low jet Pt

Underlying event



Comparison with NLO

CDF Run II Preliminary _[ L=1.13fb"
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SISCone in CDF 0

G. Salam and G. Soyez have developed a seedless cone algorithm that
1s more rigorous from theoretical point-of-view->FastJet package
Differences between the currently-used Midpoint algorithm and the newly

developed SIScone algorithm in MC at the hadron-level.
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SISCone

Differences between the currently-used Midpoint algorithm and the newly
developed SIScone algorithm at the parton-level.
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Differences < 1% — negligible effects on data-NLO comparisons
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Again, data in good agreement with
NLO pQCD predictions

Phys. Rev. D 75, 092006 (2007)

0 L=1.01b!

(1 Jets reconstructed with the k
algorithm, D= 0.7.
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Differences between Midpoint and SISCone

[1 Dafferences between the currently-used Midpoint algorithm and the newly
developed SIScone algorithm in MC at the hadron-level.
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Differences between Midpoint and SISCone

[1 Daifferences between the currently-used Midpoint algorithm and the newly
developed SIScone algorithm at the parton-level.
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Again, data in good agreement with
NLO pQCD predictions

Phys. Rev. D 75, 092006 (2007)

0 L=1.01b!

[1 Jets reconstructed with the k
algorithm, D= 0.7.

3
C oy 01 L 0<ly <07
o o
: |"_'|: """""
‘__m il .-_*:_:?% ................... __#u_ i it . L o
E L | M L -. I- L | |
L 0.7<y"® <121 L ey’ <16
o | =
I e g g T
3 1 i 1 - T ) 1 i | L N P -I " L . | s
L 200 400 =[]
[ 16y |21 pLET [GeVic]
T .el K, D=0.7
B —e— CDFdala (L=1.016")
£ ==~ - -L Systamatic uncartaintias
-_“;"1"'** ------- PDF unceraintias
[ , L u-Exuu-ma::p‘TET
a 200 400 &
pin [Gevie] MRBST2004

11



DataTheory  d?a / dy™®' dp™™ [nb/(GeV/c)]

Chino

T b
G

-
[=1
L

-
=]
%

-
- (5] [ ]

L=
ian

=
in

Inclusive jets with Kk

K; D=0.5 | K, D=1.0
——
. —&— O0F data (L= 1.0f5") ™
!h Syaternatic urcaraintias B -i
C "* —&— NLD: JETRAD CTECE. 1M T .h._‘
- - carmeetad to hagran lavel = -
- r.‘h I"ﬂ:ur:"-'E"'""‘:‘rk_r'.z=”'n- - 1".1
- - ) £
qu. -=--~- PDF uncanalntles i

n Sa C --1-—
" Sae i e
- ::*_ r ‘.*\..\'-\.
— e - ——
- 01<|y""T|<0.7 —— - 0.1<|y"T|<0.7 R
- e | ———

1 | L L [ L L | 1 L L 1 . L
" L " 1 L L L ] L L L 1 L — | 1 o -l -----
- Partan te hadran lawal comection [
11 —» 1.4
- = forte Cerin modelng uneeranias - 1'1.._‘_‘\—;
— I

i i i L i i J. i i i _I i i i L i i L i J
200 40 B0 00 ann 500
P [GeVie) P [Eevie]

0 Measurement with

different D parameters
(D: separation parameter
that characterizes the
size of jets)

Parton-to-hadron level
corrections larger for
larger D parameters
(larger UE contributions)

Both measurements in
good agreement with
NLO pQCD after UE
and hadronization
corrections

®» NLO pQCD provides a reasonable description of dependence on jet size.
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Test of pQCD predictions
Sensitive to new physics:
decays of massive particles,
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W/Z + jets

Motivation

O
O

NLO predictions only up to Njet=2
Higher multiplicities accessible via

matrix element + parton shower
(ME+PS) Monte Carlo predictions

B  Special ME-PS matching (MLM.,
CKKW) to avoid double counting

Good testing ground for such

predictions
Measurement
[0 W events selected with
electron+missing E. (W — ev)
1 Jets clustered with JetClu R=0.4

E et > 15 GeV ; |y < 2.
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[

Measured jet multiplicity

W + jets

distributions compared to:

(W — ev) += N Jets

CDF Run Il Preliminary

% @t COF e .[ummpul
B NLO pQCD predictions 3wl | iﬂi%ﬂ;{gﬂ;
[0 Good agreement up to Njet=2 2 ] .
(no prediction for Njet>=3) € L . Lo
B Matched LO ME+PS predictions 0 T
[ Absolute cross sections lower ——
than the measurement (k-factor) ]
[0 Good description of “relative™ 1 ——]
jet multiplicity rates up to
Njet=4 R i 2 3 4
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® Good agreement with
NLO where available

® Note the data has
been corrected back
to the hadron level,
l.e. no knowledge of
the CDF detector is
needed for any
itinerant theorist to be
able to compare this
predictions to the
data
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SpartyJet

® AtLHC, would like to use modern and
varied jet algorithms

¢ both ATLAS and CMS are
moving to the SISCone algorithm

® SpartyJet developed to make
analyses with multiple algorithms
easier, especially with topoclusters in
ATLAS

¢ www.pa.msu.edu/~huston/Sparty
Jet/SpartyJet.html

. . ,
o see Pierre-Antoine’s talk
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Figure 53: The average jet mass is plotted versus the transverse momentum of the jet using several
different jet algorithms with a distance scale (D = Ry, ) of 0.7.
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Figure 50: The inclusive jet cross section for the LHC with a prmm value for the hard scattering of
approximately 2 TeV /e, using several different jet algorithms with a distance scale (D = R, ) of 0.7.
The first bin has been suppressed.
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Figure 51: The jet mass distributions for an inclusive jet sample generated for the LHC with a prmin
value for the hard scattering of approximately 2 TeV /¢, using several different jet algorithms with a

distance scale () = Ry, ) of 0.7. The first bin has been suppressed.



Current experimental status

® ATLAS ® CMS
+ iterative cone + iterative cone
a R=0.4,0.7 a R=0.5,0.7
¢ Ky (will move to + Fastdet k-
FastJet k) 4 D=0.4,0.6
4 D=0.5,0.7 + Midpoint
+ Midpoint a R=0.5,0.7
a R=0.4,0.7 o SISCone
+ moving to SISCone a R=0.5,0.7
through FastJet + may eliminate
a R=0.4,0.7 IC(R=0.7) and one or
+ SpartyJet being both Midpoint

moved into Athena algorithms
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Abstract

In this paper, we will develop the perturbative framework for the calculation of hard-scattering
processes. We will undertake to provide both a reasonably rigorous development of the
formalism of hard-scattering of quarks and gluons as well as an intuitive understanding of the
physics behind the scattering. We will emphasize the role of logarithmic corrections as well as
power counting in &g in order to understand the behaviour of hard-scattering processes. We will
include ‘rules of thumb’ as well as “official recommendations’, and where possible will seek
to dispel some myths. We will also discuss the impact of soft processes on the measurements
of hard-scattering processes. Experiences that have been gained at the Fermilab Tevatron will
be recounted and, where appropriate. extrapolated to the LHC.

(Some figures in this article are in colour only in the electronic version)
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Ahstract

In this article, we review some of the complexdties of jet algorithms and of the resultant compar-
isons of data to theory, We review the extensive experience with jet messurements at the Tevatron,
the extrapolation of this acguired wisdom to the LHC and the differences between the Tevatron
and LHC environments. We also describe a framework (SpartyJet) for the convenient comparison
of results using different jet algorithms.



Recommendations of jet paper

...available from SpartyJet webpage

In this context of past experiences and future expectations we have made several recommendations
that we feel will play an essential role in the successful analysis of the data from the LHC. These include:

e the use of a variety of jet algorithms for physics analyses with continuous cross-checking of results

e the use of 4-vector kinematics, including evaluation of the jet mass, to characterize a jet

the use of seedless algorithms (or correction back to seedless) in cone-based jet clustering

e the correction (where possible) of jets back to the hadron level in experimental analyses

In addition, we have presented a framework (SpartyJet) that facilitates the use of multiple jet algorithms
in both experimental and theoretical studies.
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Extra: Jet algorithms at (N)LO parton level

Midpoint algorithm:
put seed at midpoints
between clusters

Remember at LO, 1 parton = 1 jet

At NLO, there can be two partons in a
jet and life becomes more interesting

Let’s set the p; of the second parton
= z that of the first parton and let them
be separated by a distance d (=AR)

Then in regions | and Il (on the left),
the two partons will be within R, of
the jet centroid and so will be
contained in the same jet

¢ ~10% of the jet cross sectionisin 10
Region lI; this will decrease as 9y Ny
the jet p; increases (and o o . St
decreases) 70 ]

z z

+ at NLO the ky algorithm 04 04_
corresponds to Region | (for 02| 02

D=R); thus at parton level, the R=07 R3ZY

cone algorithm is always larger 04 os 12 15 04 o5 12 16

than the k+_algorithm ¢ !

cone

7
3

Figure 22. The parameter space (d,Z) for which two partons will be merged into a
single jet.

all of the discrimination between
jet algorithms is what happens in 11



