θ₁₃ Search with Double Chooz

Nov.07 @ GDR-Susy'07 ULB & VUB (Bruxelles)

Anatael Cabrera

Marie Curie Fellow / CNRS Double Chooz @ APC (Paris) • Physics Motivation

• Reactor v-Oscillation Physics

• The Double Chooz

Experiment

• What to remember...

Motivation...

oscillations = leptonic mixing

PMNS: 3 angles & I complex phase => leptonic CP violation For Reactors...

$$1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2 \Delta + \alpha^2 \Delta^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}.$$

Clean measure of θ_{13} : 2x2 v-oscillation & negligible contributions...

 δ_{CP} , PMNS ambiguous solutions, other lepton contributions, NC contamination, matter-effect, ND-FD propagation, cross-section, etc...

See

reactor oscillation physics...

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - 4c_{13}^2 (c_{13}^2 s_{12}^2 c_{12}^2 \sin^2 \Phi_{21} + s_{13}^2 c_{12}^2 \sin^2 \Phi_{31} + s_{13}^2 s_{12}^2 \sin^2 \Phi_{32})$$

advantages of reactor-Vs

- disappearance V-oscillation precision: high resolution E/L CC events: characterise dip
- copious, free and sometimes switchable (on/off)
- finite size and well localised [L]
- spectrum shape & normalisation (±2%)
- inverse-β:
 - cross-section (±0.2%)
 - a few MeV plenty of calibration sources [E]
- flux: multi-detector extrapolation (1/L²)
- background: cosmogenic dominated => overburden

- spectrum: convolution of...
 - $\Sigma \beta$ -tails from fission debris
 - $\sigma(E) => E_{threshold} = 1.8 MeV$
- threshold: see only 1/4 vs
 - slow decays contribute little

• v = e + [prompt] + n-capture on H/Gd [delayed]:

- $E(v)=E(e^+) + \Delta$
- $E(n_{th}-Gd \text{ capture}) \sim 8MeV => energy tag (away from BG)$
- n-Gd capture τ~30μs (CHOOZ)

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - a few reactors may be nice too: "reactor off"
- reduce & understand backgrounds
 - overburden, radio-purity & detector design
- reduce & understand experimental systematics
 - inter-detector normalisation: <0.6%</p>
 - inter-detector energy calibration: <1-2%

detector design

analysis: 3 cuts (7 cuts at CHOOZ)

e+-n energy deposited

Apollonio et al (CHOOZ): hep-ex/0301017

e+-n time-correlation

Huber et al. hep-ph/0601266

sensitivity regime

Double Chooz

Collaboration

~100 physicists - 35 institutes/universities

Designed and R&D completed

Power: 8.5GW_{th}

edf

Building...

Near (400m) 500v/day 120mwe 8.2tonnes

A.L. R. R. R. P.

Near & Far Laboratories

Far (1050m) Installation March'08 Commisioning early 2009

DC R&D & Construction...

Gd doped liquid scintillator

Liquid Scintillator: 80% Dodecane + PXE 20% + 0.1%Gd

readout

knowledge versus time...

90% C.L. contour if $\sin^2(2\theta_{13}) = 0 \& \Delta m_{atm}^2 = 2.5 \times 10^{-3} \text{ eV}^2$

DC-I: FD only: 10x stat CHOOZ (límíted by flux uncertaínty)

DC-II: FD+ND: rate + shape analysis (limited by relative normalisation uncertainty)

Phases:

If observed...

 $\Delta m_{atm}^2 = 3.0 \times 10^{-3} \text{ eV}^2$ sin²(2 θ_{13})=0.12

systematics break down

		CHOOZ	Double-Chooz		
Reactor- induced	ν flux and σ	1.9%	<0.1 %	Two ''identical'' detectors & Low background	σ ^{abs} norm
	Reactor power	0.7%	<0.1 %		
	Energy per fission	0.6%	<0.1 %		
Detector - induced	Solid angle	0.3%	<0.1 %	distance measured @ 10 cm & monitor core barycenter	
	Volume	0.3%	0.2%	mass measurements to 0.2%	σrelative
	Density	0.3%	<0.1 %	T control: ND & FD	
	H/C ratio & Gd concentration	1.2%	<0.1 %	mass measurements + same scintillator batch + stability R&D	
	Spatial effects	1.0%	<0.1 %	calibration	
	Deadtime	negligible	0.25%	dedicated measurements & calibration	
Analysis	From 7 to 3 cuts	1.5%	0.2 - 0.3 %	(see later)	σ^{analysis}
	Total	2.7%	< 0.6 %		norm

Simulation of v Spectrum

Time evolution of the isotopic composition of the cores: MURE

Construction of total v spectrum from nuclear databases.

*Full propagation of errors and correlations

*Potential improved shape analysis for the extraction of oscillation parameters => critical for DC-phase I

 \star Tool for feasibility of applied v physics: power measurement and non-proliferation

What to remember...

Projects in the World- 2007

<u>beams + reactors = deeper insight</u>

Competitive & overlapping coverage by both techniques!

Similar time scale

Huber et al: hep-ph/0601266

- A reactor (independent) measurement of θ_{13} is critical for global neutrino oscillation physics reach
 - Beams sensitivity is compromised by several unknown observables $(\theta_{13}, \delta_{CP}, \pm \Delta m^2_{atm})$ leading to similar signature
- Double Chooz is being built.
 - FD running by early 2009
 - ND running by mid-2010, laboratory will be available by 2009
- Double Chooz can "observe" [to 3σ if $sin^2(2\theta_{13}) > 0.05$] or limit θ_{13} :
 - Phase I: $sin^2(2\theta_{13}) > 0.06$ by 2010
 - Phase II: $sin^2(2\theta_{13}) > 0.025$ by 2013
- Double Chooz is leader experiment in the field: defining much of the strategy to measure θ₁₃ with reactors.

THE END