Leptogenesis in SO(10) theories

Michele Frigerio (SPhT, CEA-Saclay)

EURO-GDR SUSY - Bruxelles - 14 November 2007

A tight link between baryogenesis and m_v in a class of SO(10) models

M.Frigerio & S.Lavignac (SPhT, Saclay), P.Hosteins (Patras), A.Romanino (SISSA, Trieste), in preparation

EURO-GDR SUSY - Bruxelles - 14 November 2007

Outline

- Sketch of seesaw and leptogenesis in usual SO(10) theories
- An alternative SO(10) assignment of matter fields \bullet
- How one and the same Yukawa coupling generates (i) the light neutrino mass matrix $m_{\rm V}$ (ii) a B-L asymmetry in leptons & down quarks
- Computation of the B-L asymmetry, estimate of the efficiency of baryogenesis, predictions for low energy neutrino parameters

The main result: $\epsilon_{B-L} \propto \frac{\text{Im}[m_{11}(mm^*m)_{11}]}{[\text{Tr}(m^*m)]^2}$

Fermion masses in SO(10)

 $16_M = (1_M + \overline{5}_M + 10_M)_{SU(5)} = N^c + (L, d^c) + (Q, u^c, e^c)$

Yukawa couplings to electroweak scale Higgs doublets:

 $y_u 16_M 16_M 10_H^u \supset y_u (LN^c + Qu^c)H_u$ $y_d 16_M 16_M 10_H^d \supset y_d (Le^c + Qd^c)H_d$

Neutrino Dirac-type mass: $M_D = M_u$ (as well as $M_e = M_d$)

 $f16_M 16_M \overline{16}_H \overline{16}_H \overline{16}_H / \Lambda \supset fN^c N^c S^2 / \Lambda$

Right-handed neutrino Majorana-type mass: $M_N = f (V_S)^2 / \Lambda$

Seesaw:
$$m_{\nu} = -M_D M_N^{-1} M_D^T$$

For detailed realizations of SO(10) Higgs sector, see e.g. talk by A.Melfo

Leptogenesis in SO(10)

The N masses break lepton number and the lightest N decays out-of-equilibrium through CP violating couplings:

$$\epsilon_L = \frac{1}{8\pi} \sum_k F(M_k/M_1) \frac{Im[(yy^{\dagger})_{1k}(yy^{\dagger})_{1k}]}{yy_{11}^{\dagger}}$$

 $\frac{n_B}{s} \approx 10^{-3} \eta \epsilon_L$

In minimal SO(10) $y = y_u$ and ε_L is far too small. Complete realistic SO(10) models are viable (see e.g. talk by P.Hosteins). y depends on several parameters not observable at low energy.

A twist in SO(10) theories

Let us introduce a vector matter multiplet IO_M :

 $y_d 16_M 10_M 16_H \supset y_d \ (\ \overline{5}_M^{16} \ 5_M^{10} \ 1_H^{16} + 10_M^{16} \ \overline{5}_M^{10} \ \overline{5}_H^{16} \)$

 $1_{H^{16}}$ takes a GUT scale VEV that breaks the SO(10) rank; (L_h, d^c_h)¹⁶ and (L^c_h, d_h)¹⁰ form a heavy vector-like pair

The down Higgs doublet H_d sits in $I6_H$; the light (L , d^c) are sitting in $I0_M$

Implicit assumption: a mass term $M_M I 0_M I 0_M$ is forbidden (in the same way as $M_H I 0_H I 0_H$ is forbidden to cope with hierarchy problem)

If no assumption is made: $(L, d^c) = \cos\theta (L, d^c)^{10} + \sin\theta (L, d^c)^{16}$

Type II seesaw with a 54_{H}

Neutrinos have no Dirac-type mass :

 $y_u 16_M 16_M 10_H \supset \nu^c L_h H_u$ $y_d 16_M 10_M 16_H \supset \nu^c L ?$

The usual seesaw contribution to m_v is suppressed !

 $f10_M 10_M 54_H \supset f \ \overline{5}_M^{10} \ \overline{5}_M^{10} \ 15_H^{54} \supset fLL\Delta$ Let us introduce a 54_H Higgs multiplet $\lambda 10_H 10_H 54_H \supset \lambda \ 5_H^{10} \ 5_H^{10} \ \overline{15}_H^{54} \supset \lambda H_u H_u \overline{\Delta}$

Neutrino masses are induced via type II seesaw:

 $m_{\nu} = \frac{\lambda v_u^2}{M_{\star}} f$

54_H lepto- & baryo-genesis

 $54 = 15 + \overline{15} + 24$ $10_M = 5_M + \overline{5}_M$

- The 15 Higgs multiplet with mass M₁₅ < M_{GUT} decays into light leptons and quarks, (L, d^c) ⊂ 10_M, producing a net B-L number
- Because of SO(10), matter has the same coupling f to 15 and 24: if (5_M)_{1,2,3} were massless, then ∈_{B-L} ∝ Im [Tr (f f* f f*)] = 0
- But $(M_5)_{1,2,3} \approx \overline{y_{e,\mu,\tau}} V_{GUT}$, so that $\epsilon_{B-L} \propto \Sigma_{ij} F_{ij} Im [f_{ij} (f^* f f^*)_{ij}] \neq 0$
- Since f is proportional to m_v, the CP violating phases needed for baryogenesis are the same observable at low energy!

The B-L asymmetry (I)

Let us focus on the scalar component Δ of the SU(2)_L triplet in 15_H :

$$\epsilon_{B-L}^{\Delta} = 2 \cdot \frac{\Gamma(\Delta \to L^*L^*) - \Gamma(\Delta^* \to LL)}{\Gamma_{tot}(\Delta^*) + \Gamma_{tot}(\Delta)}$$

(other asymmetries differ by order one SU(5) Clebsches and B-L factors)

The loop contains 2 heavy sleptons from 5_M , with masses M_l and M_k , and a Higgsino from 24, either $S \sim (1,1,0)_{SM}$ or $T \sim (1,3,0)_{SM}$

$$\epsilon_{B-L}^{\Delta} = \frac{1}{16\pi} \sum_{R=S,T} c_R \sum_{k,l=1}^{3} F\left(\frac{M_R}{M_\Delta}, \frac{M_k}{M_\Delta}, \frac{M_l}{M_\Delta}\right) \frac{Im[f_{kl}^*(ff^*f)_{kl}]}{Tr(f^*f) + \dots}$$

 $F(x, x_k, x_l) = \Theta(1 - x_k - x_l) x \log \left[\frac{1 + 2x^2 - x_k^2 - x_l^2 + \sqrt{\lambda(1, x_k^2, x_l^2)}}{1 + 2x^2 - x_k^2 - x_l^2 - \sqrt{\lambda(1, x_k^2, x_l^2)}} \right]$

The B-L asymmetry (II)

$$M_{k} + M_{l} \to 0 \qquad F \approx \frac{M_{R}}{M_{\Delta}} \log \left(1 + \frac{M_{\Delta}^{2}}{M_{R}^{2}} \right) \\F_{max} \approx 0.8 \text{ for } \frac{M_{R}}{M_{\Delta}} \approx 0.5$$
$$M_{k} + M_{l} \to M_{\Delta} \qquad F \to 0 \\M_{k} + M_{l} > M_{\Delta} \qquad F = 0$$
$$\overbrace{L_{k}}^{f_{lj}} = \int_{L_{k}}^{f_{lj}} \int_{L_{k}^{f_{lj}}} \int_{L_{k}}^{f_{l$$

Maximal value of the B-L asymmetry :

$$(\epsilon_{B-L}^{\Delta})_{max} \approx 0.1 \left. \frac{\text{Im}[m_{11}^*(mm^*m)_{11}]}{[\text{Tr}(mm^*)]^2} \right|_{max} \approx 0.1 \left. \sqrt{\frac{\Delta m_{12}^2}{\Delta m_{23}^2}} s_{13}^2 \right|_{max} \approx 10^{-3}$$

Since $n_B/n_Y \sim 10^{-10} \sim 10^{-2} \in_{B-L} \eta$, an efficiency factor $\eta \sim 10^{-4}$ is sufficient

The efficiency (I)

$$\Gamma_{tot}(\Delta) = \frac{M_{\Delta}}{32\pi} \left[\sum_{i,j=1}^{3} |f_{ij}|^2 + |f_{11}|^2 + |\lambda|^2 \right]$$

- Δ can decay into $L_i L_j$ or $L_1^h L_1^h$ or $H_u H_u$
- For each decay channel a, define $K_a = \Gamma_a(\Delta) / H(T=M_{\Delta})$ Decays occur out-of-equilibrium for $K_a < I$
- Light V mass |m_V|² > Δm²₂₃ requires K_L K_H > 200
 If K_L >>I strong washout from inverse decays;
 If K_H >>I, one needs | f_{ij} | <<I to have K_L<I, but then the asymmetry is strongly suppressed: ∈_{B-L} ∝ f_{ij}⁴ !
- One more constraint comes from CPT invariance: $\Gamma_{tot}(\Delta) = \Gamma_{tot}(\Delta^*)$ implies $\epsilon(\Delta \rightarrow LL) = -\epsilon(\Delta \rightarrow L^{h_1}L^{h_1})$ The 2 asymmetries erase each other by $LL \leftrightarrow L^{h_1}L^{h_1}$ scattering

The efficiency (II)

$$\Gamma_{tot}(\Delta) = \frac{M_{\Delta}}{32\pi} \left[\sum_{i,j=1}^{3} |f_{ij}|^2 + |f_{11}|^2 + |\lambda|^2 \right]$$

One shot solution of all efficiency problems ?!? Take |f₁₁ << |

- $K_{Lh} \ll I$: suppression of inverse decays as well as LL $\leftrightarrow L^{h_1}L^{h_1}$ scattering (and \in is only linearly suppressed in f_{II})
- $K_L, K_H > I : \Delta$ decays before annihilating by gauge interaction (and m_v can be big enough);
- the asymmetry in L's is made different from the one in L^h's by fast LL \leftrightarrow H_uH_u scattering; later L^h's convert into L's

These qualitative arguments require further investigation

Dynamics is analog to T.Hambye et al., PLB 632, 667 (2006)

Predictions for V parameters

Defining $T_f = Tr(ff^*)$, conditions for η close to 1 and $|m_v|^2 > \Delta m^2_{23}$ are:

$$T_f \gg \frac{M_{\Delta}}{10^{16} \text{GeV}}$$
, $|f_{11}|^2 \ll \frac{M_{\Delta}}{10^{16} \text{GeV}}$, $|\lambda|^2 T_f > \frac{M_{\Delta}^2}{(10^{15} \text{GeV})^2}$

The B-L asymmetry is suppressed by the small parameter |f₁₁| linearly

$$\epsilon_{B-L}^{\Delta} \leq \frac{FT_f^{3/2}|f_{11}|}{10\pi} \frac{\left|\sum_{j} (U^*)_{1j}^2 m_j^3\right|}{\left(\sum_{i} m_i^2\right)^{3/2}}$$

Small f_{11} implies normal hierarchy of v masses & suppression of $0v2\beta$ decays. The asymmetry is proportional to $(U_{13})^2 = s_{13}^2$.

$$\epsilon_{B-L}^{\Delta} \le 10^{-3} |f_{11}|$$

The scale of leptogenesis M_{Δ} can be lowered down to 10^{10} GeV keeping η close to 1 and $\epsilon_{B-L} > 10^{-7}$

Conclusions

 SO(10) theories are the ideal playground to make leptogenesis models predictive

We identified a new realization of SO(10) seesaw, such that ϵ_{B-L} depends directly on m_{ν}

The CP violation needed for baryogenesis coincides with the low energy leptonic CP violating phases

Efficient baryogenesis requires normal V mass spectrum and prefers s_{13} close to the present bound