Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Pierre Hosteins

Patras University

13th November 2007 Brussels

P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arXiv:hep-ph/0606078 A. Abada, P.H., F-X. Josse-Michaux and S. Lavignac, arXiv:0711.xxxx

Type I+II Seesaw Mechanism

The seesaw mechanism is usually realised through couplings of LH leptons to singlet RH neutrinos N_{Ri} (type I) or to an $SU(2)_L$ triplet Δ_L (type II). When both types are present, interactions are encoded into the following Yukawa potential:

$$
Y_{\nu} \overline{N}_R I_L H + \frac{1}{2} M_R \overline{N}_R N_R^c + \frac{1}{2} f_L \overline{I}_L^c \Delta_L I_L - M_\Delta^2 \text{Tr}(\Delta_L^{\dagger} \Delta_L) + \text{h.c.}
$$

which provides a mass matrix for the light neutrinos :

$$
\textbf{m}_\nu = \textbf{v}_\text{L} \textbf{f}_\text{L} - \textbf{v}^2 \textbf{Y}_\nu^\text{T} \textbf{M}_\text{R}^{-1} \textbf{Y}_\nu \ll \nu
$$

with $v_L = \langle \Delta^0_L \rangle \sim v^2/M_\Delta$.

イロト イ押ト イヨト イヨト

Type I+II Seesaw Mechanism

The seesaw mechanism is usually realised through couplings of LH leptons to singlet RH neutrinos N_{Ri} (type I) or to an $SU(2)_L$ triplet Δ_L (type II). When both types are present, interactions are encoded into the following Yukawa potential:

$$
Y_{\nu} \overline{N}_R I_L H + \frac{1}{2} M_R \overline{N}_R N_R^c + \frac{1}{2} f_L \overline{I}_L^c \Delta_L I_L - M_\Delta^2 \text{Tr}(\Delta_L^{\dagger} \Delta_L) + \text{h.c.}
$$

which provides a mass matrix for the light neutrinos :

$$
\textbf{m}_{\nu} = \textbf{v}_\text{L} \textbf{f}_\text{L} - \textbf{v}^2 \textbf{Y}_{\nu}^\text{T} \textbf{M}_\text{R}^{-1} \textbf{Y}_{\nu} \ll \nu
$$

with $v_L = \langle \Delta^0_L \rangle \sim v^2/M_\Delta$.

To reduce the number of parameters, let us consider theories with an extended gauge sector $SU(2)_L \times U(1)_Y \to SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ and Left-Right Parity $SU(2)_L \leftrightarrow SU(2)_R$. M_R then comes from the vev of an $SU(2)_R$ triplet Δ_R : $M_R = v_R f_R$ and we can have the relations:

$$
\mathbf{f}_{\mathsf{L}} = \mathbf{f}_{\mathsf{R}} = \mathbf{f}, \qquad \mathsf{Y}_{\nu} = \mathsf{Y}_{\nu}^{\mathsf{T}}, \qquad \mathsf{V}_{\mathsf{L}} \sim \frac{\nu^2}{\mathsf{V}_{\mathsf{R}}}
$$

Method of Reconstruction

The seesaw formula we are going to study is thus:

$$
\mathbf{m}_{\nu} = \mathbf{v}_{L} \mathbf{f} - \frac{\mathbf{v}^{2}}{\mathbf{v}_{R}} \mathbf{Y}_{\nu} \mathbf{f}^{-1} \mathbf{Y}_{\nu}
$$

with f and Y_{ν} symmetric

メロメ メ御き メミメ メミメ

重

 299

Method of Reconstruction

The seesaw formula we are going to study is thus:

$$
\mathbf{m}_{\nu} = \mathbf{v}_{L} \mathbf{f} - \frac{\mathbf{v}^{2}}{\mathbf{v}_{R}} \mathbf{Y}_{\nu} \mathbf{f}^{-1} \mathbf{Y}_{\nu} \quad \text{with } f \text{ and } Y_{\nu} \text{ symmetric}
$$

Using the symmetry of Y_{ν} , it can be put in the following simple form:

$$
Z = \alpha X - \beta X^{-1},
$$
 $\alpha = v_L,$ $\beta = \frac{v^2}{v_R}$

with $X \equiv X(f)$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 QQ

画

Method of Reconstruction

The seesaw formula we are going to study is thus:

$$
\mathbf{m}_{\nu} = \mathbf{v}_{L} \mathbf{f} - \frac{\mathbf{v}^{2}}{\mathbf{v}_{R}} \mathbf{Y}_{\nu} \mathbf{f}^{-1} \mathbf{Y}_{\nu} \quad \text{with } f \text{ and } Y_{\nu} \text{ symmetric}
$$

Using the symmetry of Y_{ν} , it can be put in the following simple form:

$$
Z = \alpha X - \beta X^{-1},
$$
 $\alpha = v_L,$ $\beta = \frac{v^2}{v_R}$

with $X \equiv X(f)$.

Since Z and X are symmetric, we can diagonalise them with the same complex orthogonal matrix: $Z = O_Z^T \hat{Z} O_Z$ and $O_X = O_Z$, translating the equation to the eigenvalues:

$$
x_i^{\pm} = \frac{z_i \pm \sqrt{z_i^2 + 4\alpha\beta}}{2}
$$

Thus, knowledge of $Y_{\nu} \Rightarrow \mathbf{\mathbf{8}}$ solutions for f (Akhmedov-Frigerio) labeled by $"(+ + +)"$," $(+ + -)"$, etc...

SO(10) embedding

We apply this method to SUSY $SO(10)$ GUTs, which are a natural embedding of L-R symmetric theories: realisation of LR symmetric seesaw is made with a Higgs sector $\supset 10_{\text{u}} + 10_{\text{d}} + 126 + \overline{126} + 54$.

The relevant part of the superpotential is :

 $W \supset (Y_u)_{ii}16_i16_i10_u + (Y_d)_{ii}16_i16_i10_d + f_{ii}16_i16_i126$

イロト イ押ト イヨト イヨト

SO(10) embedding

We apply this method to SUSY $SO(10)$ GUTs, which are a natural embedding of L-R symmetric theories: realisation of LR symmetric seesaw is made with a Higgs sector $\supset 10_u + 10_d + 126 + 126 + 54$.

The relevant part of the superpotential is :

$$
W \supset Y_u I_L N_R^c H_u + Y_d I_L e_R^c H_d + \frac{1}{2} f I_L \Delta_L I_L + \frac{1}{2} f I_R^c \Delta_R I_R^c
$$

Moreover, $SO(10)$ gives the very useful relations : $Y_{\nu} = Y_{u}$ and $Y_{e} = Y_{d}$, fixing Y_{ν} from low energy parameters up to some complex phases.

イロト イ押ト イヨト イヨト

SO(10) embedding

We apply this method to SUSY $SO(10)$ GUTs, which are a natural embedding of L-R symmetric theories: realisation of LR symmetric seesaw is made with a Higgs sector $\supset 10_u + 10_d + 126 + \overline{126} + 54$.

The relevant part of the superpotential is :

$$
W \supset Y_u I_L N_R^c H_u + Y_d I_L e_R^c H_d + \frac{1}{2} f I_L \Delta_L I_L + \frac{1}{2} f I_R^c \Delta_R I_R^c
$$

Moreover, $SO(10)$ gives the very useful relations : $Y_{\nu} = Y_{\mu}$ and $Y_{e} = Y_{d}$, fixing Y_{ν} from low energy parameters up to some complex phases.

We consider a normal hierarchy ($m_1 = 10^{-3}$ eV), and our free parameters are :

$$
\bullet\;\textbf{v}_R\in[10^{12},10^{17}]\;\text{GeV}
$$

• **h** =
$$
\beta/\alpha = v_u^2/v_Lv_R
$$
 that we take $h = 0.1 - 1$

• a dozen of phases, remnants of the fact that we cannot rephase leptons and quarks independently in SO(10)

 QQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

Figure: 4 different mass spectra of heavy neutrinos as function of v_R (dotted region contains fine-tuning in m_{ν})

 \leftarrow

×.

Figure: 4 different mass spectra of heavy neutrinos as function of v_R (dotted region contains fine-tuning in m_{ν})

 \leftarrow

つへへ

Leptogenesis

Leptogenesis

When the RH neutrino spectrum is hierarchical the CP asymmetry from N_1 decays in the early Universe is, in the one flavour approximation:

$$
\varepsilon_1 \simeq \frac{3}{8\pi} \frac{\text{Im} [Y m_{\nu}^* Y^{\mathcal{T}}]_{11}}{(YY^{\dagger})_{11}} \frac{M_1}{v_u^2}
$$

The baryon asymmetry is then given by :

$$
y_B = -1.48 \times 10^{-3} \eta_1 \: \varepsilon_1 \simeq 8.7 \times 10^{-11} \quad \Longrightarrow \quad \varepsilon_1 \gtrsim 10^{-6}
$$

where η_1 < 1 is the wash-out factor due to lepton number violating scatterings.

In type I theories where $Y_{\nu} \simeq Y_{\mu}$ is very hierarchical, $M_1 \sim 10^5$ GeV, burving the hopes for a succesful leptogenesis from N_1 decays \implies interest of type I+II seesaw.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ

Leptogenesis

 $(\pm, -, +)$ are promising, but washout is often strong, we need to solve the Boltzmann equations. \leftarrow

Pierre Hosteins (Patras University) Successful Leptogenesis in the Left-Right Symmetric S 13th November 2007 Brussels 7 / 12

Traditional leptogenesis considers that N_i decay into 1 flavour mainly. However it has been shown (Abada et al, Nir et al) that the washout can be quite different between the different flavours, for $T_{RH} \leq 10^{12}$ tan² β (when y_{τ} is in equilibrium) :

$$
\varepsilon_1 = \sum_\alpha \varepsilon_{1\alpha} \quad \text{ and } \quad \kappa_1 = \sum_\alpha \kappa_{1\alpha} \quad \text{ where } \alpha = \text{e}, \mu, \tau \text{ and :}
$$

$$
y_B \sim 10^{-3} \sum_\alpha \eta_{1\alpha} \varepsilon_{1\alpha} \neq 10^{-3} \sum_\alpha \eta_{1\alpha} \sum_\beta \varepsilon_{1\beta}
$$

 \implies we can have $\kappa=\sum \kappa_{1\alpha}$ large, thus η_1 small, but one $\kappa_{1\alpha}$ small so that one flavour is weakly washed out $\eta_{1\alpha} \sim 1$.

Moreover, preexisting asymmetry from N_2 in flavour α can be preserved while N_1 is in the strong washout regime and all the asymmetry is exponentially washed out in the one flavour approximation (Vives, Shindou et al).

 $($ \Box $)$ $($ \Box $)$

Figure: y_B for different choices of phases in the flavour framework (left) and the one flavour approximation (right)

In the one flavour approximation, when production of CP asymmetry from N_1 can be neglected :

$$
Y'_{B-L}(z) = -\kappa_1 f(z) Y_{B-L}(z) \qquad \Rightarrow \qquad Y_{B-L}^{\text{fin}} \simeq Y_{B-L}^{\text{ini}} \exp(-3\pi/8 \times \kappa_1)
$$

Here $\kappa_1 \geq 10$ so that preexisting asymmetry can be suppressed by a factor up to $\sim 10^{-9}$ 290

Figure: y_B for different choices of phases in the flavour framework (left) and the one flavour approximation (right)

In the flavour regime, the equation is split by flavour :

$$
Y'_{\Delta_{\alpha}}(z) = -\kappa_{\alpha} f(z) \sum_{\beta} A_{\alpha\beta} Y_{\Delta_{\beta}} \qquad \Rightarrow \qquad Y_{B-L} \gtrsim Y_{\Delta_{\alpha}}^{\text{ini}} \exp(-3\pi/8 \times \kappa_{\alpha})
$$

and we have a mild but sufficient hierarchy in the w[ash](#page-14-0)[out](#page-16-0)[p](#page-13-0)[a](#page-16-0)[ra](#page-17-0)[m](#page-10-0)[et](#page-16-0)[e](#page-17-0)[rs](#page-10-0)[.](#page-11-0)

Figure: y_B for different choices of phases in the flavour framework (left) and the one flavour approximation (right)

 \implies N₂ decays have to be taken into account in the flavour case, where some flavours are weakly washed out by N_1 decays.

 \sim m.

 \overline{AB}

Correction to $M_e = M_d$

For the moment we worked with the relations : $Y_e = Y_d$ and $Y_v = Y_u$. For a more realistic model we must add corrections.

This can be implemented in our SO(10) model by antisymmetric contributions from non-renormalisable operators $\frac{Y^{\text{NR}}_{\text{II}}}{\Lambda}\mathbf{10}_{\text{d}}.\mathbf{45}.\mathbf{16}_{\text{i}}.\mathbf{16}_{\text{j}}$:

$$
M_e = v_d^{10} Y_{10} - 3 v_d^{10} Y_{120}
$$

$$
M_d = v_d^{10} Y_{10} + v_d^{10} Y_{120}
$$

and the second contribution is $Y_{120} = \frac{\langle 45 \rangle}{\Lambda}$ $\frac{45}{\Lambda}$ Y^{NR} with $\langle 45 \rangle \sim M_{GUT}$.

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

 2990

Correction to $M_e = M_d$

For the moment we worked with the relations : $Y_e = Y_d$ and $Y_\nu = Y_u$. For a more realistic model we must add corrections.

This can be implemented in our SO(10) model by antisymmetric contributions from non-renormalisable operators $\frac{Y^{\text{NR}}_{\text{II}}}{\Lambda}\mathbf{10}_{\text{d}}.\mathbf{45}.\mathbf{16}_{\text{i}}.\mathbf{16}_{\text{j}}$:

$$
M_e = v_d^{10} Y_{10} - 3 v_d^{10} Y_{120}
$$

$$
M_d = v_d^{10} Y_{10} + v_d^{10} Y_{120}
$$

and the second contribution is $Y_{120} = \frac{\langle 45 \rangle}{\Lambda}$ $\frac{45}{\Lambda}$ Y^{NR} with $\langle 45 \rangle \sim M_{GUT}$.

 \implies consequence : Y_e and Y_d not diagonal in the same basis but still $Y_\nu = Y_u$:

$$
Y_{\nu} = Y_{u} = U_{m}^{T} V_{CKM}^{T} \hat{Y}_{u} V_{CKM} U_{m}
$$

 U_m is a unitary matrix : 3 angles θ_{ij}^m and 6 phases.

 QQ

 $\mathbf{A} \cap \mathbf{D} \rightarrow \mathbf{A} \oplus \mathbf{D} \rightarrow$

Correction to $M_e = M_d$

If we take a general U_m we can have non-negligible modifications. Here we take $\theta^m_{12} \in [0;\frac{\pi}{4}]$ and display the deformation of the curves $\varepsilon_{1,\tau}$ and $\tilde{m}_{1,\mu}$ as a function of v_R .

When fitting fermion masses we have some freedom on θ_{12}^m . We take as limiting cases two kinds of sets, with $\theta^m_{12} \simeq$ 0.2 and $\theta^m_{12} \simeq$ 1, and take <mark>dynamical initial</mark> conditions for the Boltzmann Equations.

Numerical results for y_B ($T_{in} = 10^{11}$ GeV)

Type II-like solutions $(\pm, +, +)$ can yield good values of y_B without any problem thanks to large values of M_1 at large v_R :

Numerical results for y_B ($T_{in} = 10^{11}$ GeV)

For cases $(\pm, \pm, -)$ with small M_1 , experimental constraints are only reachable for the solutions with M_2 increasing with v_R . N_2 decays could be sufficient for $(-,-,-)$ but N_1 reduces by a factor ≥ 10 .

イロト イ伺 トラ チャラ

Numerical results for y_B ($T_{in} = 10^{11}$ GeV)

The interesting cases $(\pm, -, +)$ can yield sufficient baryon asymmetry thanks to $M_e = M_d$ corrections with the large θ_{12}^m fits.

• T_{in} : lowering T_{in} to 10^{10} GeV to reduce tension with gravitino constraint in generic SUSY models eliminates any ($\pm, \pm, -$) with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.

イロト イ押ト イヨト イヨト

- \bullet T_{in}: lowering T_{in} to 10^{10} GeV to reduce tension with gravitino constraint in generic SUSY models eliminates any ($\pm, \pm, -$) with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.
- \bullet m_1 : going to quasi-degenerate light neutrino spectrum can modify RH neutrino spectrum and increase washout parameters, preventing the possibility of N_2 leptogenesis

イロト イ押ト イヨト イヨト

- \bullet T_{in}: lowering T_{in} to 10^{10} GeV to reduce tension with gravitino constraint in generic SUSY models eliminates any $(\pm, \pm, -)$ with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.
- \bullet m_1 : going to quasi-degenerate light neutrino spectrum can modify RH neutrino spectrum and increase washout parameters, preventing the possibility of N_2 leptogenesis
- θ_{13} : large θ_{13} tends to lower y_B in some solutions, $\theta_{13} = 0$ is preferred.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ

 QQ

- \bullet T_{in}: lowering T_{in} to 10^{10} GeV to reduce tension with gravitino constraint in generic SUSY models eliminates any ($\pm, \pm, -$) with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.
- \bullet m_1 : going to quasi-degenerate light neutrino spectrum can modify RH neutrino spectrum and increase washout parameters, preventing the possibility of N_2 leptogenesis
- θ_{13} : large θ_{13} tends to lower y_B in some solutions, $\theta_{13} = 0$ is preferred.
- \bullet Y_v = Y_u: relaxing equality of the eigenvalues of Y_v and Y_u can have important consequences since for $(\pm,-,+)$ for example, $M_1\propto y_2^2\Rightarrow$ allows fits with small θ_{12}^m to work, which is desirable since large θ_{12}^m creates tensions with $\mu \rightarrow e\gamma$ experimental constraints.

KOD KARD KED KED E VOQO

Conclusion

- We introduced a method for extracting the RH neutrinos mass matrix in the LR symmetric seesaw.
- We found several new solutions for the RH neutrino spectrum, in accordance with previous work \Rightarrow new possibilities for successful leptogenesis in $SO(10)$ models.
- Flavour effects are crucial in some cases for N_2 leptogenesis to be efficient.
- Some solutions yield successful leptogenesis with a large $B L$ breaking scale \Rightarrow corrections for realistic fermion masses are preponderant.
- Order one deviations from $Y_{\nu} = Y_{\mu}$ can provide large enhancements and allow to avoid tensions with Lepton Flavour Violating constraints.

イロト イ押ト イヨト イヨト