Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Pierre Hosteins

Patras University

13th November 2007 Brussels

P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arXiv:hep-ph/0606078 A. Abada, P.H., F-X. Josse-Michaux and S. Lavignac, arXiv:0711.xxxx

Type I+II Seesaw Mechanism

The seesaw mechanism is usually realised through couplings of LH leptons to singlet RH neutrinos N_{Ri} (type I) or to an $SU(2)_L$ triplet Δ_L (type II). When both types are present, interactions are encoded into the following Yukawa potential:

$$Y_{\nu}\overline{N}_{R}I_{L}H + \frac{1}{2}M_{R}\overline{N}_{R}N_{R}^{c} + \frac{1}{2}f_{L}\overline{I}_{L}^{c}\Delta_{L}I_{L} - M_{\Delta}^{2}\mathrm{Tr}(\Delta_{L}^{\dagger}\Delta_{L}) + \mathrm{h.c.}$$

which provides a mass matrix for the light neutrinos :

$$\mathbf{m}_{\nu} = \mathbf{v}_{\text{L}} \mathbf{f}_{\text{L}} - \mathbf{v}^2 \mathbf{Y}_{\nu}^{\text{T}} \mathbf{M}_{\text{R}}^{-1} \mathbf{Y}_{\nu} \ll v$$

with $v_L = \langle \Delta_L^0 \rangle \sim v^2/M_\Delta$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Type I+II Seesaw Mechanism

The seesaw mechanism is usually realised through couplings of LH leptons to singlet RH neutrinos N_{Ri} (type I) or to an $SU(2)_L$ triplet Δ_L (type II). When both types are present, interactions are encoded into the following Yukawa potential:

$$Y_{\nu}\overline{N}_{R}I_{L}H + \frac{1}{2}M_{R}\overline{N}_{R}N_{R}^{c} + \frac{1}{2}f_{L}\overline{I}_{L}^{c}\Delta_{L}I_{L} - M_{\Delta}^{2}\mathrm{Tr}(\Delta_{L}^{\dagger}\Delta_{L}) + \mathrm{h.c.}$$

which provides a mass matrix for the light neutrinos :

$$\mathbf{m}_{\nu} = \mathbf{v}_{\mathsf{L}} \mathbf{f}_{\mathsf{L}} - \mathbf{v}^{2} \mathbf{Y}_{\nu}^{\mathsf{T}} \mathbf{M}_{\mathsf{R}}^{-1} \mathbf{Y}_{\nu} \ll v$$

with $v_L = \langle \Delta_L^0
angle \sim v^2/M_\Delta.$

To reduce the number of parameters, let us consider theories with an extended gauge sector $SU(2)_L \times U(1)_Y \rightarrow SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ and Left-Right Parity $SU(2)_L \leftrightarrow SU(2)_R$. M_R then comes from the vev of an $SU(2)_R$ triplet Δ_R : $\mathbf{M_R} = \mathbf{v_R} \mathbf{f_R}$ and we can have the relations:

$$\mathbf{f}_{\mathsf{L}} = \mathbf{f}_{\mathsf{R}} = \mathbf{f}, \qquad Y_{\nu} = Y_{\nu}^{\mathsf{T}}, \qquad v_{\mathsf{L}} \sim \frac{v^2}{v_{\mathsf{R}}}$$

Method of Reconstruction

The seesaw formula we are going to study is thus:

$$\mathbf{m}_{\nu} = \mathbf{v}_{\mathsf{L}} \mathbf{f} - \frac{\mathbf{v}^2}{\mathbf{v}_{\mathsf{R}}} \mathbf{Y}_{\nu} \mathbf{f}^{-1} \mathbf{Y}_{\nu}$$

with f and Y_{ν} symmetric

イロト イポト イヨト イヨト

Method of Reconstruction

The seesaw formula we are going to study is thus:

$$\mathbf{m}_{\nu} = \mathbf{v}_{\mathsf{L}} \mathbf{f} - \frac{\mathbf{v}^2}{\mathbf{v}_{\mathsf{R}}} \mathbf{Y}_{\nu} \mathbf{f}^{-1} \mathbf{Y}_{\nu}$$
 with f and Y_{ν} symmetric

Using the symmetry of Y_{ν} , it can be put in the following simple form:

$$Z = \alpha X - \beta X^{-1}, \qquad \alpha = v_L, \quad \beta = \frac{v^2}{v_R}$$

with $X \equiv X(f)$.

イロト イポト イヨト イヨト

3

Method of Reconstruction

The seesaw formula we are going to study is thus:

$$\mathbf{m}_{\nu} = \mathbf{v}_{\mathsf{L}} \mathbf{f} - \frac{\mathbf{v}^{2}}{\mathbf{v}_{\mathsf{R}}} \mathbf{Y}_{\nu} \mathbf{f}^{-1} \mathbf{Y}_{\nu}$$
 with f and Y_{ν} symmetric

Using the symmetry of Y_{ν} , it can be put in the following simple form:

$$Z = \alpha X - \beta X^{-1}, \qquad \alpha = v_L, \quad \beta = \frac{v^2}{v_B}$$

with $X \equiv X(f)$.

Since Z and X are symmetric, we can diagonalise them with the same complex orthogonal matrix: $Z = O_Z^T \hat{Z} O_Z$ and $O_X = O_Z$, translating the equation to the eigenvalues:

$$x_i^{\pm} = \frac{z_i \pm \sqrt{z_i^2 + 4\alpha\beta}}{2}$$

Thus, knowledge of $Y_{\nu} \Rightarrow 8$ solutions for f (Akhmedov-Frigerio) labeled by "(+++)","(++-)", etc...

Pierre Hosteins (Patras University)

SO(10) embedding

We apply this method to SUSY SO(10) GUTs, which are a natural embedding of L-R symmetric theories: realisation of LR symmetric seesaw is made with a Higgs sector $\supset 10_u + 10_d + 126 + \overline{126} + 54$.

The relevant part of the superpotential is :

 $W \supset (Y_u)_{ij} 16_i 16_j 10_u + (Y_d)_{ij} 16_i 16_j 10_d + f_{ij} 16_i 16_j \overline{126}$

SO(10) embedding

We apply this method to SUSY SO(10) GUTs, which are a natural embedding of L-R symmetric theories: realisation of LR symmetric seesaw is made with a Higgs sector $\supset 10_u + 10_d + 126 + \overline{126} + 54$.

The relevant part of the superpotential is :

$$W \supset Y_u I_L N_R^c H_u + Y_d I_L e_R^c H_d + \frac{1}{2} f I_L \Delta_L I_L + \frac{1}{2} f I_R^c \Delta_R I_R^c$$

Moreover, SO(10) gives the very useful relations : $\mathbf{Y}_{\nu} = \mathbf{Y}_{\mathbf{u}}$ and $\mathbf{Y}_{\mathbf{e}} = \mathbf{Y}_{\mathbf{d}}$, fixing Y_{ν} from low energy parameters up to some complex phases.

イロト イヨト イヨト

SO(10) embedding

We apply this method to SUSY SO(10) GUTs, which are a natural embedding of L-R symmetric theories: realisation of LR symmetric seesaw is made with a Higgs sector $\supset 10_u + 10_d + 126 + \overline{126} + 54$.

The relevant part of the superpotential is :

$$W \supset Y_u I_L N_R^c H_u + Y_d I_L e_R^c H_d + \frac{1}{2} f I_L \Delta_L I_L + \frac{1}{2} f I_R^c \Delta_R I_R^c$$

Moreover, SO(10) gives the very useful relations : $\mathbf{Y}_{\nu} = \mathbf{Y}_{\mathbf{u}}$ and $\mathbf{Y}_{\mathbf{e}} = \mathbf{Y}_{\mathbf{d}}$, fixing Y_{ν} from low energy parameters up to some complex phases.

We consider a normal hierarchy ($m_1 = 10^{-3}$ eV), and our free parameters are :

- $\bullet~v_{R} \in [10^{12}, 10^{17}]~GeV$
- $\mathbf{h}=eta/lpha=\mathbf{v}_u^2/\mathbf{v}_L\mathbf{v}_R$ that we take h=0.1-1
- a dozen of phases, remnants of the fact that we cannot rephase leptons and quarks independently in SO(10)

イロト 不得下 イヨト イヨト 二日

Figure: 4 different mass spectra of heavy neutrinos as function of v_R (dotted region contains fine-tuning in m_{ν})

5 / 12

Figure: 4 different mass spectra of heavy neutrinos as function of v_R (dotted region contains fine-tuning in m_{ν})

Leptogenesis

Leptogenesis

When the RH neutrino spectrum is hierarchical the CP asymmetry from N_1 decays in the early Universe is, in the one flavour approximation:

$$\varepsilon_1 \simeq \frac{3}{8\pi} \frac{\text{Im}[Ym_{\nu}^*Y^T]_{11}}{(YY^{\dagger})_{11}} \frac{M_1}{v_u^2}$$

The baryon asymmetry is then given by :

$$y_B = -1.48 \times 10^{-3} \eta_1 \, \varepsilon_1 \simeq 8.7 \times 10^{-11} \quad \Longrightarrow \quad \varepsilon_1 \gtrsim 10^{-6}$$

where $\eta_1 \leq 1$ is the wash-out factor due to lepton number violating scatterings.

In type I theories where $Y_{\nu} \simeq Y_u$ is very hierarchical, $M_1 \sim 10^5$ GeV, burying the hopes for a succesful leptogenesis from N_1 decays \implies interest of type I+II seesaw.

イロト 不得下 イヨト イヨト 二日

Leptogenesis

 $(\pm, -, +)$ are promising, but washout is often strong, we need to solve the Boltzmann equations.

Pierre Hosteins (Patras University)

Successful Leptogenesis in the Left-Right Symmetric S

13th November 2007 Brussels 7 / 12

Traditional leptogenesis considers that N_i decay into <u>1</u> flavour mainly. However it has been shown (Abada et al, Nir et al) that the washout can be quite different between the different flavours, for $T_{RH} \lesssim 10^{12} \tan^2 \beta$ (when y_{τ} is in equilibrium) :

$$\varepsilon_1 = \sum_{\alpha} \varepsilon_{1\alpha}$$
 and $\kappa_1 = \sum_{\alpha} \kappa_{1\alpha}$ where $\alpha = e, \mu, \tau$ and :

$$y_B \sim 10^{-3} \sum_{\alpha} \eta_{1\alpha} \varepsilon_{1\alpha} \neq 10^{-3} \sum_{\alpha} \eta_{1\alpha} \sum_{\beta} \varepsilon_{1\beta}$$

 \implies we can have $\kappa = \sum \kappa_{1\alpha}$ large, thus η_1 small, but one $\kappa_{1\alpha}$ small so that one flavour is weakly washed out $\eta_{1\alpha} \sim 1$.

Moreover, preexisting asymmetry from N_2 in flavour α can be preserved while N_1 is in the strong washout regime and all the asymmetry is exponentially washed out in the one flavour approximation (Vives, Shindou et al).

・ロト ・ 同ト ・ ヨト ・ ヨト

Figure: y_B for different choices of phases in the flavour framework (left) and the one flavour approximation (right)

In the one flavour approximation, when production of CP asymmetry from N_1 can be neglected :

$$Y'_{B-L}(z) = -\kappa_1 f(z) Y_{B-L}(z) \qquad \Rightarrow \qquad Y^{fin}_{B-L} \simeq Y^{fin}_{B-L} \exp\left(-3\pi/8 \times \kappa_1\right)$$

Here $\kappa_1\gtrsim 10$ so that preexisting asymmetry can be suppressed by a factor up to $\sim 10^{-9}$

Figure: y_B for different choices of phases in the flavour framework (left) and the one flavour approximation (right)

In the flavour regime, the equation is split by flavour :

$$Y'_{\Delta_{\alpha}}(z) = -\kappa_{\alpha}f(z)\sum_{\beta}A_{\alpha\beta}Y_{\Delta_{\beta}} \qquad \Rightarrow \qquad Y_{B-L}\gtrsim Y_{\Delta_{\alpha}}^{ini}\exp\left(-3\pi/8 imes\kappa_{\alpha}
ight)$$

and we have a mild but sufficient hierarchy in the washout parameters.

Figure: y_B for different choices of phases in the flavour framework (left) and the one flavour approximation (right)

 \implies N₂ decays have to be taken into account in the flavour case, where some flavours are weakly washed out by N₁ decays.

4 A 1

Mass Corrections

Correction to $M_e = M_d$

For the moment we worked with the relations : $Y_e = Y_d$ and $Y_\nu = Y_u$. For a more realistic model we must add corrections.

This can be implemented in our SO(10) model by antisymmetric contributions from non-renormalisable operators $\frac{Y_{ij}^{NR}}{\Lambda}10_d.45.16_i.16_j$:

$$M_e = v_d^{10} Y_{10} - 3v_d^{10} Y_{120} \qquad M_d = v_d^{10} Y_{10} + v_d^{10} Y_{120}$$

and the second contribution is $Y_{120} = \frac{\langle 45 \rangle}{\Lambda} Y^{NR}$ with $\langle 45 \rangle \sim M_{GUT}$.

イロト 不得下 イヨト イヨト 二日

Correction to $M_e = M_d$

For the moment we worked with the relations : $Y_e = Y_d$ and $Y_\nu = Y_u$. For a more realistic model we must add corrections.

This can be implemented in our SO(10) model by antisymmetric contributions from non-renormalisable operators $\frac{Y_{ij}^{NR}}{\Lambda}10_d.45.16_i.16_j$:

$$M_e = v_d^{10} Y_{10} - 3v_d^{10} Y_{120} \qquad M_d = v_d^{10} Y_{10} + v_d^{10} Y_{120}$$

and the second contribution is $Y_{120} = \frac{\langle 45 \rangle}{\Lambda} Y^{NR}$ with $\langle 45 \rangle \sim M_{GUT}$.

 \implies consequence : Y_e and Y_d not diagonal in the same basis but still $Y_{\nu} = Y_u$:

$$Y_{\nu} = Y_{u} = U_{m}^{T} V_{CKM}^{T} \hat{Y}_{u} V_{CKM} U_{m}$$

 U_m is a unitary matrix : 3 angles θ_{ii}^m and 6 phases.

(日) (四) (王) (王) (王)

9 / 12

Correction to $M_e = M_d$

If we take a general U_m we can have non-negligible modifications. Here we take $\theta_{12}^m \in [0; \frac{\pi}{4}]$ and display the deformation of the curves $\varepsilon_{1,\tau}$ and $\tilde{m}_{1,\mu}$ as a function of v_R .

When fitting fermion masses we have some freedom on θ_{12}^m . We take as limiting cases two kinds of sets, with $\theta_{12}^m \simeq 0.2$ and $\theta_{12}^m \simeq 1$, and take **dynamical initial conditions** for the Boltzmann Equations.

Numerical results for y_B ($T_{in} = 10^{11}$ GeV)

Type II-like solutions $(\pm, +, +)$ can yield good values of y_B without any problem thanks to large values of M_1 at large v_R :

Numerical results for y_B ($T_{in} = 10^{11}$ GeV)

For cases $(\pm, \pm, -)$ with small M_1 , experimental constraints are only reachable for the solutions with M_2 increasing with v_R . N_2 decays could be sufficient for (-, -, -) but N_1 reduces by a factor $\gtrsim 10$.

A D N A B N A B N

Numerical results for y_B ($T_{in} = 10^{11}$ GeV)

The interesting cases $(\pm, -, +)$ can yield sufficient baryon asymmetry thanks to $M_e = M_d$ corrections with the large θ_{12}^m fits.

• $\underline{T_{in}}$: lowering T_{in} to 10^{10} GeV to reduce tension with gravitino constraint in generic SUSY models eliminates any $(\pm, \pm, -)$ with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.

イロト イヨト イヨト イヨト

- <u>**T**</u>_{in}: lowering T_{in} to **10**¹⁰ **GeV** to reduce tension with gravitino constraint in generic SUSY models eliminates any $(\pm, \pm, -)$ with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.
- <u>m1</u>: going to quasi-degenerate light neutrino spectrum can modify RH neutrino spectrum and increase washout parameters, **preventing the possibility of** N₂ **leptogenesis**

イロト イポト イラト イラト

- <u>**T**</u>_{in}: lowering T_{in} to **10**¹⁰ **GeV** to reduce tension with gravitino constraint in generic SUSY models eliminates any $(\pm, \pm, -)$ with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.
- <u>m1</u>: going to quasi-degenerate light neutrino spectrum can modify RH neutrino spectrum and increase washout parameters, **preventing the possibility of** N₂ **leptogenesis**
- θ_{13} : large θ_{13} tends to lower y_B in some solutions, $\theta_{13} = 0$ is preferred.

・ロト ・同ト ・ヨト ・ヨト

- <u>**T**</u>_{in}: lowering T_{in} to **10¹⁰ GeV** to reduce tension with gravitino constraint in generic SUSY models eliminates any $(\pm, \pm, -)$ with $M_1 \sim 10^{10}$ GeV but preserves the others. $(\pm, +, +)$ with large M_1 become marginally allowed.
- <u>m1</u>: going to quasi-degenerate light neutrino spectrum can modify RH neutrino spectrum and increase washout parameters, **preventing the possibility of** N₂ **leptogenesis**
- θ_{13} : large θ_{13} tends to lower y_B in some solutions, $\theta_{13} = 0$ is preferred.
- $\underline{\mathbf{Y}_{\nu} = \mathbf{Y}_{\mathbf{u}}}$: relaxing equality of the eigenvalues of Y_{ν} and Y_{u} can have important consequences since for $(\pm, -, +)$ for example, $M_{1} \propto y_{2}^{2} \Rightarrow$ allows fits with small θ_{12}^{m} to work, which is desirable since large θ_{12}^{m} creates tensions with $\mu \rightarrow e\gamma$ experimental constraints.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのの

Conclusion

- We introduced a method for extracting the RH neutrinos mass matrix in the LR symmetric seesaw.
- We found several new solutions for the RH neutrino spectrum, in accordance with previous work \Rightarrow new possibilities for successful leptogenesis in SO(10) models.
- Flavour effects are crucial in some cases for N_2 leptogenesis to be efficient.
- Some solutions yield successful leptogenesis with a large B L breaking scale \Rightarrow corrections for realistic fermion masses are preponderant.
- Order one deviations from $Y_{\nu} = Y_u$ can provide large enhancements and allow to avoid tensions with Lepton Flavour Violating constraints.

< ロト < 同ト < ヨト < ヨト