CALCULATING THE RELIC DENSITY AT ONE-LOOP IN SUSY

A FEW EXAMPLES

BARO Nans

Worked in collaboration with BOUDJEMA Fawzi, SEMENOV Andrei

LAPTH

EURO-GDR Dark Matter Session

BARO NANS (LAPTH)

э

イロト 不得 とくほ とくほ とう

RELIC DENSITY OF DARK MATTER

 $0.092 < \Omega_{DM}h^2 < 0.122$ Precision 10%(WMAP) $\rightarrow 2\%!(PLANCK)$

Era of precision measurement

COSMOLOGY (RADIATION DOMINATION)+ PARTICLE PHYSICS

$$\Omega_{DM}h^2 pprox rac{3 imes 10^{-27} cm^3 s^{-1}}{<\sigma(\chi^0\chi^0 o SM)v>}$$

PRECISION

Need to know σ precisely

- \Rightarrow Computation of relic density
- \Rightarrow Parameters reconstruction at the LHC/LC
- \Rightarrow Check the underlying cosmological scenario

ロト くぼと くほと くほう

RELIC DENSITY OF DARK MATTER

 $0.092 < \Omega_{DM}h^2 < 0.122$ Precision 10%(WMAP) $\rightarrow 2\%!(PLANCK)$

Era of precision measurement

COSMOLOGY (RADIATION DOMINATION)+ PARTICLE PHYSICS

$$\Omega_{DM}h^2 pprox rac{3 imes 10^{-27} cm^3 s^{-1}}{<\sigma(\chi^0\chi^0 o SM)v>}$$

PRECISION

Need to know σ precisely

- \Rightarrow Computation of relic density
- \Rightarrow Parameters reconstruction at the LHC/LC
- \Rightarrow Check the underlying cosmological scenario

ロト くぼと くほと くほう

MINIMAL SUPERSYMMETRIC STANDARD MODEL

A lot of parameters (~100 without CP violation)

SECTORS Fermion $egin{array}{l} f \ \gamma, Z^0, W^\pm \ H^0, h^0, A^0, H^\pm \end{array}$ Gauge Higgs \tilde{f} χ_i^{\pm}, χ_i^0 Sfermion Chargino/Neutralino

A lot of vertices (~ 5000)

... and a lot of counter-terms!

・ロト ・四ト ・ヨト ・ヨト

SLOOPS (AUTOMATIC TOOL)

A code for the calculation of loops diagrams in the MSSM with application to collider physics, astrophysics and cosmology

BARO NANS (LAPTH)

FEATURES OF THE CODE

- Complete and coherent renormalisation of the MSSM (On Shell scheme)
- Flexibility (between renormalisation schemes)
- Non linear gauge fixing

$$\begin{aligned} \mathcal{L}^{GF} &= -\frac{1}{\xi_W} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_W\tilde{\beta}Z_{\mu})W^{\mu +} \\ &+ i\xi_W \frac{g}{2}(v + \tilde{\delta}h^0 + \tilde{\omega}H^0 + i\tilde{\kappa}G^0 + i\tilde{\rho}A^0)G^+|^2 \\ &- \frac{1}{2\xi_Z}(\partial_{\mu}Z^{\mu} + \xi_Z \frac{g}{2c_W}(v + \tilde{\epsilon}h^0 + \tilde{\gamma}H^0)G^0)^2 - \frac{1}{2\xi_A}(\partial_{\mu}A^{\mu})^2 \end{aligned}$$

CHECKS

- Gauge independent
- Finite

BARO NANS (LAPTH)

INPUT PARAMETERS

The MSSM contains 8×3 SUSY breaking parameters for sfermions, 3×3 fermion masses and 12 parameters for gauge couplings, scalar potential and the SUSY breaking gaugino masses:

$$\underbrace{g,g',g_s, \underbrace{v_1,v_2}_{\text{gauge}}, \underbrace{m_1,m_2,m_{12}}_{\text{v.e.v.}}, \mu, \underbrace{M_1,M_2,M_3}_{\text{breaking}}, \underbrace{M_L,M_R,A_f}_{\text{sfermion}}}$$

Set of parameters directly connected to the physical quantities (On Shell inputs):

$$\underbrace{\alpha(0), m_W, m_Z}_{\text{EW}}, \underbrace{\overset{"}_{t_{\beta}} = v_2/v_1", m_A, T_1, T_2}_{\text{Higgs}}, \underbrace{\overset{m_{\chi_1^+}, m_{\chi_2^+}}_{\text{Chargino}}, \underbrace{m_{\chi_1^0}}_{\text{Neutralino}}, \underbrace{\overset{m_{\tilde{f}_1}, m_{\tilde{f}_2}, A_f}_{\text{sfermion}}, \underbrace{\alpha_s, m_{\tilde{g}}}_{\text{QCD}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to define $tan(\beta)$?/Scheme dependence

 t_{β} doesn't represent a physical/measurable quantity

We have many different ways/schemes to define it:

\overline{DR}

 δt_{β} is a pure divergence (Heinemeyer, Hollik and Weiglein *hep-ph/0412214*) (non gauge invariant \rightarrow we use the linear gauge)

MH

 δt_{β} is defined from the mass m_H

(we loose a correction but the definition is physical)

$A^0 \tau \tau$

 δt_{β} is defined from the decay $A^0 \rightarrow \tau \tau$ (vertex $\propto m_{\tau} t_{\beta}$)

BARO NANS (LAPTH)

イロト イポト イヨト イヨト

APPLICATIONS & TESTS

- At Tree Level: Comparisons with Grace and CompHEP
- At One-Loop (without renormalisation): Comparisons with PLATON and DarkSUSY (Boudjema, Semenov and Temes hep-ph/0507127) $\chi_1^0\chi_1^0 \rightarrow \gamma\gamma, \chi_1^0\chi_1^0 \rightarrow gg, \chi_1^0\chi_1^0 \rightarrow Z^0\gamma$
- Mass corrections: H^{\pm} , h^0 (Freitas and Stöckinger *hep-ph/0205281*), \tilde{b}_i (Hollik and Rzehak *hep-ph/0305328*), χ_2^0 , χ_3^0 , χ_4^0 (Fritzsche and Hollik *hep-ph/0203159*)
- Decoupling (SUSY loops into SM processes)
- Collaboration with the GRACE group

APPLICATION TO DARK MATTER

$$\chi_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

ANNIHILATION & COANNIHILATION

 $\chi \chi \to X_{\rm SM} Y_{\rm SM} \quad \chi \tilde{f} \to X_{\rm SM} Y_{\rm SM}$

- A large number of diagrams: UV finite, gauge independent
- Calculation of Hard/Soft brems.: *k_c* stability, IR finite (photon mass regulator)

AVERAGE

$$<\sigma v>=\frac{\sum_{ij}g_{i}g_{j}\int_{(m_{1}+m_{2})^{2}}ds\sqrt{s}K_{1}(\sqrt{s}/T)p_{ij}^{2}\sigma_{ij}(s)}{2T(\sum_{i}g_{i}m_{i}^{2}K_{2}(m_{i}/T))^{2}}$$

BARO NANS (LAPTH)

APPLICATION TO DARK MATTER

$$\chi_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

ANNIHILATION & COANNIHILATION

 $\chi \chi \to X_{\rm SM} Y_{\rm SM} \quad \chi \tilde{f} \to X_{\rm SM} Y_{\rm SM}$

- A large number of diagrams: UV finite, gauge independent
- Calculation of Hard/Soft brems.: *k_c* stability, IR finite (photon mass regulator)

AVERAGE

For a preliminary study, we compute the approximation:

 $<\sigma v>\simeq a+b < v^2 >$ with v = relative velocity $\simeq 0.1-0.3$

A FEW EXAMPLES

BINO CASE

 $\chi\chi \to l^+ l^-$

COANNIHILATION CASE

$$egin{aligned} \chi ilde{ au}^+ &
ightarrow au^+ \gamma \ \chi ilde{ au}^+ &
ightarrow au^+ Z \ ilde{ au}^+ ilde{ au}^+ &
ightarrow au^+ au^+ \end{array}$$

MIXED CASE

$$egin{array}{lll} \chi\chi
ightarrow W^+W^- \ \chi\chi
ightarrow ZZ \end{array}$$

<ロ> <四> <四> <四> <三</p>

BINO CASE

$(\times 10^{26} cm^3/s)$									
$\chi \chi \to \tau^+ \tau^- (36\%)$	Tree		Αττ	\overline{DR}	MH				
a	0.081		+38%	+35%	+15%				
b	3.858		+18%	+18%	+18%				
Ωh^2	0.166		0.138	0.138	0.141				
$\frac{\delta\Omega h^2}{\Omega h^2}$			-17%	-17%	-15%				

• Ampl $(v \rightarrow 0) \propto m_{\tau}$ thus $a \sim 0$

• $\alpha(0) \rightarrow \alpha(m_Z)$ implies a correction of -15%

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

COANNIHILATION CASE

$(\times 10^{26} cm^3/s)$						
$\chi ilde{ au}^+ ightarrow au^+ \gamma \ (37\%)$	Tree	Αττ				
a	4.342	+9%				
b	-1.116	+9%				
$\chi ilde{ au}^+ ightarrow au^+ Z \ (10\%)$						
а	1.093	+21%				
b	-0.214	+19%				
$ ilde{ au}^+ ilde{ au}^+ o au^+ au^+$ (23%)						
а	43.345	+17%				
b	-14.445	+13%				
с	0	-0.994				
Ωh^2	0.128	0.117				
$\frac{\delta\Omega h^2}{\Omega h^2}$		-9%				

. - 26 2

- No t_{β} scheme dependence
- $\sigma_1 v = a_1 + b_1 v^2 + c_1 / v$ with $c_1 = -\pi \alpha a_0$

BARO NANS (LAPTH)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

COANNIHILATION CASE - COULOMB EFFECT

BARO NANS (LAPTH)

13/15

MIXED CASE

$(\times 10 \ cm \ / 3)$									
$\chi \chi \to W^+ W^- (75\%)$	Tree		Αττ	\overline{DR}	MH				
a	3.099		-27%	-2%	+44%				
b	5.961		-32%	-7%	+38%				
$\chi\chi \rightarrow ZZ (5\%)$									
a	0.159		-22%	+3%	+50%				
b	0.787		-30%	-6%	+39%				
Ωh^2	0.053		0.068	0.054	0.039				
$\frac{\delta\Omega h^2}{\Omega h^2}$			+28%	+2%	-26%				

 $(\times 10^{26} cm^3/s)$

- Large t_{β} scheme dependence ($\delta \mu \supset 1/(\mu^2 M_2^2)\delta t_{\beta}$)
- Large corrections

- Complete renormalisation of the MSSM
- Importance of radiative corrections in the relic density calculation
- Corrections seem to be small for the bino case either in the bulk throw coannihilation (after reabsorbing $\alpha(0) \rightarrow \alpha(m_Z)$) but still needed
- Large corrections for the mixed case
- New scenarii
- Interface with MicrOMEGAs

• □ ▶ • @ ▶ • E ▶ • E ▶