

SUSY and Extra Dimension searches at the LHC

Barbara Clerbaux ULB, Brussels

Plan:

- The LHC: ATLAS and CMS: The CMS detector status

 ATLAS and CMS results: Few examples of physics commissioning with ~10 pb⁻¹

- Search for SUSY FOCUS on early physics!
- Search for ED FOCUS on early physics!
- Summary

- Total weight: (7 kT, 12.5 kT) and Size: length (46m, 22m), diameter (25m, 15m)
- Magnetic field: ATLAS: solenoid 2T + air-core toroids CMS: big solenoid 4T
- Inner tracker: ATLAS: silicon + Transition Radiation tracker (50% at 1 TeV) CMS: silicon (15% at 1 TeV)
- ECAL: ATLAS: Liquid argon (10% at 1 GeV) but very good granularity and uniformity CMS: PbWO4 crystals very good energy resolution (5% at 1 GeV)
- HCAL: ATLAS: $\sigma/E=50\% / \sqrt{E(GeV)} + 3\%$ CMS: $\sigma/E=100\% / \sqrt{E(GeV)} + 5\%$
- **Muon detectors**: ATLAS: very good stand alone momentum resolution (7% at 1 TeV) CMS: redundant detector/trigger system (5% at 1 TeV from tracker)

CMS detector – Status

CMS "Vertical Slice Test" Magnet Test & Cosmic Challenge:

Cosmics in YB0 in UX5

Cosmics in UX5: Barrel ECAL and Muon Systems (Aug 2007)

ECAL & DT readout with final central DAQ

Lowering of YB-1 and YB-2

October 10th and 17th

Main Target: Apr'08: CMS* Closed & Field ON - Cosmics Run

 including one EE, and pixels.

 Secondary Targets: All heavy lowering completed by end-07

 Tracker installed and parts being readout by end-07
 Dec'07-Mar'08: cosmics data in open configuration (+end, barrel, -end)

B. Clerbaux - Euro-GDR SUSY 2007 - Brussels - 14/11/2006

ULE

Plan:

- The LHC: ATLAS and CMS: The CMS detector status

- ATLAS and CMS results: Few examples of physics commissioning with ~10 pb⁻¹

- Search for SUSY FOCUS on early physics!
- Search for ED FOCUS on early physics!
- Summary

- Published results for ATLAS: http://cdsweb.cern.ch/collection/ATLAS updated the PTDR(1999) in spring 2008
- Published results for CMS: CMS Physics TDRII – summer 2006 http://cmsdoc.cern.ch/cms/cpt/tdr/ updated in spring 2008: early searches (10,100 pb⁻¹)

In general: - CMS and ATLAS physics potential from 10/60 fb⁻¹ to 100/300 fb⁻¹

- Full detector simulation (detailed material description)
- Complete bg study (K-factor, new generators (still in development...)
- Estimation of the systematics

TODAY activities: Focus on **early searches** (2008 data) – 10,100 pb⁻¹ (1 fb⁻¹)

- Low statistic
- Not aligned/calibrated detector
- Rely as low as possible in MC
- Extract trigger and selection efficiency from data
- Extract bg from data

 \rightarrow physics (objects) commissioning with first beams (L = 10 pb⁻¹)

Tracker Alignment

	Expected Day 0	Goals for Physics
Tracker alignment	20-200 μm in Rφ	ο (10 μm)

Calorimeter calibration

	Expected Day 0	Ultimate goals
ECAL uniformity	~4%	< 1%
Lepton energy	0.5-2%	0.1%
HCAL uniformity	2-3%	< 1%
Jet energy	<10%	1%

ECAL, HCAL: intercalibration using azimuthal symmetry (min bias).

ECAL: π^0 calibration, then electrons

HCAL: di-jet balancing; check with photon+jets; Jet Energy Scale set by $W \rightarrow jj$ in top events CMS NOTE 2006/017

Tag and Probe (T&P): identify a physics object in an unbiased way in order to study efficiencies

One object (tag) has strict ID criteria imposed on it. Second object (probe) has looser ID criteria.

 $Z \to ee$ events: one tight electron (tag); the other can be a probe, provided the invariant mass of the pair is $\sim M_{_7}$

Plan:

- The LHC: ATLAS and CMS: The CMS detector status
- ATLAS and CMS results: Few examples of physics commissioning with ~10 $\rm pb^{-1}$

- Search for SUSY FOCUS on early physics!

- Search for ED FOCUS on early physics!
- Summary

Production cross section at LHC – versus mass:

Golden discovery channels: squark and gluino production:

Less model-dependent feature of SUSY:

- gluinos/squarks produced via strong interactions
- gluinos and quarks are heaviest
- Their decays give rise to high-pt jets
- Neutralinos/charginos decay via emission of leptons
- (assuming RPC) LSP is stable and neutral, escape from the detector

B. Clerbaux - Euro-GDR SUSY 2007 - Brussels - 14/11/2006

For m(squark, gluino) ~ 400 GeV σ ~ 100 pb -> 10 000 events expected for L=100 pb⁻¹!

Vertical arrow: mSUGRA point: $m_0=100$ GeV, $m_{1/2}=150$ GeV, $A_0=300$ GeV, $\tan\beta=4$, $\mu>0$

\rightarrow topologies: multi-jets + n-leptons + Etmiss

Try to cover broad range of experimental signatures, classified based on event topology Main background: QCD, tt, W/Z + jets

	Jet multiplicity	Additional signature	SUSY scenario	Backgrounds	
<u>Large E_T^{miss} +</u>		No lepton	mSUGRA, AMSB, split SUSY, heavy squark	QCD, ttbar, W/Z	<
	≥ 4	One lepton (e,µ)	mSUGRA, AMSB, split SUSY, heavy squark	ttbar, W	<
		di-lepton	mSUGRA, AMSB, GMSB	ttbar	<
		di-tau	GMSB, large tan β	ttbar, W	
		γγ	GMSB	free	
	~2		light squark	Z	

Baseline selection (to be optimised): typical selection for "low mass points"

- Jet multiplicity \ge 4, pt (jet1) > 100 GeV, pt (other) > 50 GeV
- Etmiss > Max(100 GeV, 0.2 Meff) Meff = Σi (pt(i) + Etmiss)
- Transverse sphericity > 0.2
- Additional cuts depending on signature (leptons)

Early SUSY studies:

Control of missing Et - and data-driven background estimation

Background estimation using the data themselves:

- QCD bg: shape de Etmiss extracted from data at lower Etmiss (Prescales)
- Z+njets with Z $\rightarrow \, \nu\nu$ bg: use "candle sample" :
 - Z + njets, Z $\rightarrow \mu\mu$ or ee, replace pt(II) \leftrightarrow Etmiss
 - or W + njets, W-> Iv, replace $pt(Iv) \leftrightarrow Etmiss$

- ttar background estimation :
- 1. Top mass is largely uncorrelated with E_{τ}^{miss}
 - used as a calibration variable
- 2. Select semi-leptonic top candidates
 - mass window: 140-200 GeV
- 3. Contributions of combinatorial BG to top mass are estimated from the sideband events (200GeV< m_{top} <260GeV)
- 4. Normalize the E_T^{miss} distribution in low E_T^{miss} region where SUSY signal contamination is small.
- Extrapolate it to high E_T^{MISS} region and estimate the background with SUSY signal selection.

000 (GeV) ATLAS Preliminary 0 lepton mode 1 lepton mode E 800 2 lepton mode 700 $L=1 \text{ fb}^{-1}$ 600 500 400 300 200 tanβ=10 100 0 °0 200 400 600 800 1000 1800 2000 1200 1400 1600 m, (GeV

 5σ discovery potential is shown: S>10 and S/ \sqrt{B} >5

 \rightarrow potential to discover:

- ~1.5 TeV scale SUSY for L=1 fb⁻¹
 - (~1 TeV scale SUSY in the three topologies
- ~1.1 TeV scale SUSY for L=100 pb⁻¹

mSUGRA points:

MSUGRA test points:

to cover different experimental signatures:

low mass points (LM1-LM9) above Tevatron limit and sensitivity to early LHC running high mass points (HM1-HM4): ultimate reach of the LHC

LM1,2,and 6 : compatible with WMAP CDM in mSUGRA

other points: compatible in NUHM

Point	m_0	$m_{1/2}$	aneta	$\mathrm{sgn}(\mu)$	A_0
LM1	60	250	10	+	0
LM2	185	350	35	+	0
LM3	330	240	20	+	0
LM4	210	285	10	+	0
LM5	230	360	10	+	0
LM6	85	400	10	+	0
LM7	3000	230	10	+	0
LM8	500	300	10	+	-300
LM9	1450	175	50	+	0
LM10	3000	500	10	+	0
HM1	180	850	10	+	0
HM2	350	800	35	+	0
HM3	700	800	10	+	0
HM4	1350	600	10	+	0

B. Clerbaux - Euro-GDR SUSY 2007 - Bru

Brussels - 14/11/2006

CMS: multijets + Etmiss

LM1: m(gluino, squark) ~ 600 GeV HM1: m(gluino, squark) ~ 1800 GeV

CMS E_T^{miss} + multijets, 1 fb⁻¹

CMS : 5 σ reach scan in mSUGRA

Multi-jets + Etmiss: HM1 test point is used as optimisation signal efficiency: ~ 12% SM bg ~ 4.4 events (1fb⁻¹) (60% Z->vv, 20% QCD jets, 10% W/Z+jets

Multi-jets + μ + Etmiss: LM1 (HM1) test point is used as optimisation for L=1 and 10 fb⁻¹ (>10 fb⁻¹)

Exclusive analyses

A particular decay channel to measure masses

Example:
$$\chi_0^2 \rightarrow I_R I \rightarrow \chi_0^1 I^+ I^-$$
:

-> dilepton (opposite sign) + jets + Etmiss

CMS analysis on LM1: 2 OS SF isolated leptons (e,µ) with pt > 10 GeV, Etmiss > 200 GeV 2 jets: Et(1)>100 GeV, Et(2) > 60 GeV, $|\eta| < 3$

Pour 1 fb⁻¹ : $N_S = 850$, $N_B = 200$ (150 de tt) Bg from the decay of the 2 W de tt: substracted using different flavor opposite sign selection

$$M_{\ell\ell}^{\max} = m(\tilde{\chi}_2^0) \sqrt{1 - \left(\frac{m(\tilde{\ell}_R^{\pm})}{m(\tilde{\chi}_2^0)}\right)^2} \sqrt{1 - \left(\frac{m(\tilde{\chi}_1^0)}{m(\tilde{\ell}_R^{\pm})}\right)^2}$$

Measure end-points in several decays, to estimate masses ~ 10 % with 100 $\rm fb^{\text{-}1}$

Expected sensitivity for 1 fb⁻¹

Expected sensitivity for 10 fb⁻¹

With L = 10 fb⁻¹: Discover m(sq), m(g) up to ~ 2.1 TeV and m(χ^{\pm}) up to ~ 700 GeV

Tevatron limit: $(\tan\beta=3, A_0=0)$: $m(sq)>390 \text{ GeV}, m(g)>310 \text{ GeV}, m(\chi^{\pm})>140 \text{ GeV}$ $(L\sim1\text{fb}^{-1})$

Plan:

- The LHC: ATLAS and CMS: The CMS detector status
- ATLAS and CMS results: Few examples of physics commissioning with ~10 pb⁻¹
- Search for SUSY FOCUS on early physics!

- Search for ED FOCUS on early physics!

- Summary

Extra dimensions: basics

Basic concepts:

- <u>3brane</u>: matter and gauge forces are confined to our3D subspace mechanisme to hide the \exists of EDfor the observer localized on the brane<u>bulk</u>: $D=(3+1)+\delta$ (δ dim to our 3B)
 - where gravity propagates

ED compact., <u>KK tower of massive states</u> for **graviton**, equal space mas: $M_{(n)}^2 = (n^2/R^2)$ (n=n₁, ... n_{δ}) Gravity - spin2 field in bulk: 3 classes of KK towers:

- 5-component tensor KK tower of massive gr. states couple to SM fields on brane via stress-energy tensor
- [(δ -1) gauge KK tower of massive vector]
- [$\delta(\delta-1)/2$ scalar towers]

<u>4D effective theory</u>: linearized quantum gravity:

 $G_{AB} = \eta_{AB} + h_{AB}$

Compute interaction KK Graviton with SM fields: all states couples with universal strength ~ $1/M_{Pl}$

If $\sqrt{s} < M_{D}$: (1) Large flat Extra Dimension (ADD)

In all cases: free parameter: m(1)

If $\sqrt{s} > M_D$: TransPlanckian physics

Search for real graviton emission in ADD type of ED framework (KK mode of G)

Model parameters are: • δ = number of ED • $M_{Pl}^2 \sim R^{\delta}M_{Pl(4+\delta)}^{(2)}$ • $M_{Pl}(4+\delta)$ = Planck mass in the 4+ δ dimensions

1. pp -> gamma + G signature: high-pt photon + high missing E bg: W->ev, gamma+jets, QCD, di-photon,

2. pp->jet+G signature: high-pt jet + large missing Et bg: irreducible: jet+W/Z -> jet + vv/ jet + | lepton veto to reduce jet+W bg

Discovery limits:

$M_{\text{PI}(4+d)}^{\text{MAX}}(\text{TeV})$	δ=2	δ=3	δ=4
LL 30fb ⁻¹	7.7	6.2	5.2
HL 100fb ⁻¹	9.1	7.0	6.0

Search for deviation of the µµ **DY spectrum due to virtual graviton exchange** (KK mode of G) - in ADD ED framework

1. pp -> G -> mumu gamma signature: 2 opposite sign muons and M>1 TeV bg: irreducible Drell-Yan, ZZ, WW, tt

Discovery limits: includes systematics: misalignment, K factor (1.3 +-0.05), hard scale and PDF, trigger

1 fb⁻¹: 3.9-5.5 TeV for n=6..3 10 fb⁻¹: 4.8-7.2 TeV for n=6..3 100 fb⁻¹: 5.7-8.3 TeV for n=6..3 300 fb⁻¹: 5.9-8.8 TeV for n=6..3

-> Planck scale: $3.9 < M_s < 8.8$ TeV and n=3 to 6.

πR

[Antoniadis, PLB246(1990)377; Lykken et al., PLB485(2000)224]

TeV⁻¹ size ED:

p LED + δ -p 'small' ED if ED small enough R <= TeV⁻¹ SM field propagate in the bulk: KK tower of states for gauge bosons:

 $m_k^2 = m_0^2 + k^2 M_C^2 \in k^2 M_C^2$

compactified on an orbifold S^{1}/Z^{2} symmetry under the transformation y -> -y All the SM fermions are at the same fixed point y=0 (model M1) or alternate at opposite points y=0 and y=r (model M2)

1 ED compactified, constant and negative curvature space (AdS₅): bounded by 2 branes: Planck brane (y=0) and TeV or SM brane (y= $\pm \pi R_{c}$)

 $\Lambda_{\pi} = \overline{M}_{Pl} e^{-k\pi R_c}$

metric: (non factorizable) $ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$ **R**₅ = -20 k²

<u>Gauss law</u>: relates M_D to M_{Pl}: $\overline{M}_{Pl}^{2} = \frac{M_{D}^{3}}{k} (1 - (e^{-2\pi k R_{c}}))$

The scale of phys. phen. as realized by 4D flat metric \perp to 5th dim: ~10¹⁸ GeV \rightarrow 1 TeV need kR_C~11 R_C~10⁻³² m (very small)

No hierarchy: $k \sim M_D \sim M_{Pl}$ consistency SM: $k < M_D$ ($k \le 0.1M_D$) $k < 0.1M_{Pl}$

Euro-дик зизи 2007

_

Davoudias et al, PRD63 (2001) 075004 hep-ph/0006041]

2 free parameters: m_1 or Λ_{π} and $k/M_{Pl} = c$ width: ~ $(k/M_{Pl})^2$ ~ m_n^3

Additional heavy neutral gauge boson are predicted in many models BSM: superstring-inspired and GUT theories - L-R models - little Higgs No reliable prediction on the Z' mass scale (free parameter)

Consider 6 Z' models, representative of a broad class of models:

- Sequential Standard Model (SSM): same coupling as SM Z
- $Z(\psi)$, $Z(\eta)$ and $Z(\chi)$, arising from E6 and SO(10) GUT groups differ from couplings to quark and leptons
- Z_LRM and ZALRM, arising from the framework of the so-called "left-right" and "alternative left-right" models.

Current limits on Z' mass: from 600-900 GeV depending on models **Tevatron:** expected to cover up to masses ~1 TeV

- Search for a (narrow) resonance at the TeV scale in the following topologies:

Di-electron, di-photon, di-muon and di-jets resonance states from GUT models (Z'), RS1-model (G) and TeV⁻¹ extra dimension model (KKZ)

- How to distinguish between models ?

B. Clerbaux et al. CMS NOTE 2006/083

$pp \rightarrow HR \rightarrow ee$

B. Clerbaux

Heavy Resonance: from TeV⁻¹ ED (KKZ), GUT (Z') and RS(G)

Euro-GDR SUSY 2007

—

Brussels - 14/11/2006

M.-C. Lemaire et al. CMS NOTE 2006/051

 $pp \to G \to \gamma \gamma$

Important channel: Identify a graviton: $G\!\to\gamma\gamma$, distinguish to Z'

Main bg: prompt diphoton (irreducible) (γ+ jets, QCD jets, DY(ee))

Selection: 2 electrons Et>150 GeV in ECAL, H/E, isolated in ECAL/tracker Reconstruction: saturation correction

R. Cousins et al. CMS NOTE 2005/002 CMS NOTE 2006/062

$pp \rightarrow HR \rightarrow \mu \mu$ Heavy Z from GUT (Z') and RS(G)

Dominant and irreducible bg: DY: pp $\to \gamma/Z \to \mu \mu$ others: ZZ,ZW,WW tt: few % of DY bg

Selection:

- muon acceptance |eta| <2.4
- at least 2 muons of opposite charge + FSR recovery
- overall acceptance ~75-85 %

Reconstruction: misalignment of tracker + muon system: "first data" (0.1 fb⁻¹) and "long term" (1 fb⁻¹) scenarios

Mass resolution: 4.2 (1TeV) to 9% (5TeV) - long term 12.5% (1 TeV) first data

Example: mass spectrum for 1TeV Z'(η) signal and DY bg (L=100 pb⁻¹, and using "first data" misalignment).

Discovery limits

CMS PTDR(volII) CERN/LHCC 2006-021

For Z' production:

 $\mu\mu$: low Land low mass: suffers from misalignment effects (recover for L>10 fb⁻¹) ee: high mass: suffers from ECAL electronic saturation, degrade the mass resolution

Discovery limits

CMS PTDR(volII) CERN/LHCC 2006-021

For G production:

Graviton Mass, GeV/c²

- BR for G $\rightarrow \,\gamma\,\gamma\,$ is ~twice the one for ee or $\mu\mu$
- Low c and mass: $\gamma \gamma$ channel suffers from QCD and prompt photon bg

Tevatron limit: (G->ee and gg) L~1 fb-1 (D0) and 1.3 (CDF)

Reach: Most of the interesting plane in (M, c) for $L < few fb^{-1}$

If new heavy Z resonance is discovered

characterisation of its coupling using:

- production and decay distributions
- measurement of forward-backward asymmetries of leptonic decay product at the resonance peak and off-peak

(uncertainty in the sign of $\cos\theta *$ in pp collision!)

R. Cousins et al. CMS NOTE 2005/022

38

M=4 TeV resonance, L=100 fb⁻¹

cos * distribution:

A_{FR} asymmetry:

B. Clerbaux

Euro-GDR SUSY 2007

Brussels - 14/11/2006

Distinguishing among heavy Z models

Spin-2 (versus spin 1) could be determined up to G mass of ~ 1700 GeV

C. Hof et al. CMS NOTE 2006/117

Search for heavy W': $W' \rightarrow \mu v$ (L-R models , composite models , little Higgs model)

Use reference model W' (same coupling as W, except opening ttbar for M(W')>180 GeV)

Topology: μ + missing Et bg:W $\rightarrow \mu\nu$, Z $\rightarrow \mu\mu$, WW incl., ZZ incl., ZW incl., tt. Selection: single muon (good quality fit) + isolation

Transverse mass: $M_{T} = \sqrt{(2pt(\mu) Et(miss) (1-cos \Delta \Phi))}$ Peak is spread at large M_{T} due to detector resolution

5 sigma discovery:

W' mass (TeV)	Luminosity (pb ⁻¹)
1	$\textbf{3.0}\pm\textbf{0.3}$
1.5	14.6 ± 1.4
2	84 ± 9
2.5	283 ± 31
~3 5 (4 5) TeV	for 1 (10) fb-1

Model	Mass reach	Integrated Luminosity (fb-1)
ADD: direct G	$M_{D} \sim 1.5 - 1.0 \text{ TeV}, \text{ n} = 3 - 6$	1
ADD: virtual G	M _D ~ 4.3 – 3.0 TeV, n= 3 – 6	0.1
	M _D ~ 5.5 – 3.9 TeV, n= 3 – 6	1
RS1		
di-electrons	M _{G1} ~ 1.3 – 3.3 TeV, c= 0.01-0.1	10
di-photons	M _{G1} ~ 1.3 – 3.5 TeV, c= 0.01-0.1	10
di-muons	M _{G1} ~ 1.2 – 3.2 TeV, c= 0.01-0.1	10
di-muons	M _{G1} ~ 0.8 – 2.3 TeV, c= 0.01-0.1	1
TeV-1 : KK Z (1)	M _z < 5 TeV	1
SSM Z'	M _z < 3 TeV	10
	M _z < 2 TeV	1
SSM W'	M _z < 4.5 TeV	10
	M _z < 3.5 TeV	1

- → Rich potential at the LHC in particular *already* at the LHC start up: luminosity < few fb⁻¹
- B. Clerbaux *Euro-GDR SUSY 2007* Brussels 14/11/2006

CMS and ATLAS from now to 1fb⁻¹:

- Early beam, up to 10 pb⁻¹: physics objet commisioning

- Detector synchronization, alignment with beam-halo events, minimum bias events
- First alignment and calibration using physics events
- Measure physics objetcs: jet and lepton rates: observe W, Z, top
- Look at BSM signature ! ...

- Physics collisions up to 100 pb⁻¹: measure SM and start searches

- 10^{6} W->lv (l=e, μ) 2x10⁵ Z->ll and 10^{4} ttbar-> μ X
- improved understanding of physics objects: JES from W->jj', b tagging
- measure background to SUSY and HIGGS searches
- initial MSSM (and some SM) Higgs sensitivity
- early look for excesses from SUSY and Z' resonances.
- Physics collisions up to 1 fb⁻¹: enter Higgs discovery era and explore large part of SUSY and resonances at ~ few TeV

Back up slides

Compact Muon Solenoid (CMS) DETECTOR

A Toroidal LHC AppartuS (ATLAS) DETECTOR

Magnets: solenoid (Inner Detector) 2T, air-core toroids (Muon Spectrometer) ~0.5T

$Bs \to \mu \mu$

 $BR(SM) = (3.4 \ 0.5) \times 10^{-9}$

SUSY : ~ $(\tan \beta)^6 \rightarrow \text{can be as high as } 10^{-6}$!

Results (limits at 95% C.L.):

DØ (2 fb⁻¹): 2.3±0.5 expected, 3 observed $\rightarrow BR(B_s \rightarrow \mu^+\mu^-) < 9.3 \times 10^{-8}$ CDF (2 fb⁻¹): 3.7±1.0 expected, 3 observed $\rightarrow BR(B_s \rightarrow \mu^+\mu^-) < 5.8 \times 10^{-8}$

Projection for Run IIb: sensitivity will approach 10-8

ATLAS & CMS, keys :

- Trigger on $\text{di}\mu$ at low pt
- tracking, PID, resolution M

oT of B-hadroi ATLAS/CMS ATLAS/CMS 10² LHCb 100 µb 10 LHCb 230 µb -2 eta of B-hadron S/B similaire ~ 0.4 30 fb⁻¹ : ~ 20 evts signal (SM), B ~ 40 evts i.e. 3σ possible with $L = 30 \text{ fb}^{-1}$, for BR = BR(SM)

CMS : AN-2006-097 ATLAS : J. Nucl. Phys. B156 (2006) 119

LHCb : e.g. resolution ~ 20 MeV (40 CMS, 80 Atlas)

Effective mass

Effective Mass: Meff = Si (pt(i) + Etmiss) discriminates between SUSY and SM background look for excess at high Meff:

10

10

10

-11

10 -12

10

0

1000

do/dM_{eff} (mb/400 GeV)

ATLAS: multijets + Etmiss

ATLAS TDR study (1999) using PYTHIA (Parton Shower)

LHC Point 2

Signal

are 1TeV

2000

Mer (GeV)

New analysis with updated MC (matrix element)

(S. Asai et al.)

B. Clerbaux Brussels - 14/11/2006 Euro-GDR SUSY 2007 —

Introduction

1916: Einstein: General relativity

1920: T. Kaluza and O. Klein: Tentative of unification of gravity+em in a (4+1)D space

Introduced important concepts still used in many models:

- (1) Presence of the gravity field in the bulk, which reflect the existence of a unify theory in 4+1
- (2) Factorization: bulk = M_4 + compact variety
- (3) Compactification of the ED re-interpretation of field in 5D in term of KK massif states in 4D

Suppose a massless scalar field

5D space-time. 5th dim: y, finite and compactification on a circle of radius R

$$S = \int d^4 x \int_{y_l}^{y_l^2} dy \frac{1}{2} [\partial_A \phi \ \partial^A \phi] = \int d^4 x \int_{y_l}^{y_l^2} dy \frac{1}{2} [\partial_\mu \phi \ \partial^\mu \phi - \partial_y \phi \ \partial^y \phi]$$

$$\phi = \sum_{n=-\infty}^{n} \phi_n(x^\mu) \chi_n(y)$$

$$\phi = \sum_{n=-\infty}^{n=\infty} (\frac{1}{\sqrt{2\pi R}}) \phi_n(x^\mu) e^{i\frac{n}{R}y}$$

$$S = \int d^4 x \int_0^{2\pi R} dy \frac{1}{2\pi R} \frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} [X_n X_m \partial_\mu \phi_n \partial^\mu \phi_m - \phi_n \phi_m \partial_y X_n \partial^y X_n]$$

$$S = \int d^4 x \frac{1}{2} \sum_{n=-\infty}^{\infty} [\partial_\mu \phi_n \partial^\mu \phi_n - m_n^2 \phi_n^2] \qquad m_n = \frac{n}{R}$$

 \rightarrow equation of a massive field A observer in 4D space sees a field propagating in 5D space as tower of massif states (called KK tower), equidistant in mass

- The forward-backward asymmetry: $A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$ $\sigma_F \equiv \int_0^1 \frac{d\sigma(q\overline{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$ qq $\rightarrow \mu + \mu -$

 θ *: angle between quark direction and μ in $\mu - \mu + CM$

$$\sigma_B \equiv \int_{-1}^0 \frac{d\sigma(q\overline{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$$

For spin 1 (γ /Z/Z') propagators: $P(\cos\theta^*; A_{\rm FB}, b) = \frac{3}{2(3+b)}(1+b\cos^2\theta^*) + A_{\rm FB}\cos\theta^*$

 $A_{_{FR}}$: depends on left- and right- handed couplings of $\gamma/Z/Z'$ to u and d quarks and charged leptons.

- Uncertainty in the sign of $\cos\theta *$ in pp collision:

quark direction is ambiguous experimentally since the quark can come from either p assume: longitudinal motion of the dimuon system gives the quark direction \rightarrow exist "mistagging probability" - high at low y value – low at high y value \rightarrow dilute the A_{FR} if not corrected for Use the Collins-Soper reference frame (pt effect) To correct for mistag: y cut, A_{FR} in y bin or mistagging probability on an event by event basis (using all event)

Distinguishing among Z' models

(c)

Define a mistagging probability function: W(y, M)unbinned likelihood fit on $P(\cos\theta*)$ after mistag correction

- \rightarrow nominal uncertainty on A_{EB}
- = 0.09 in a fit of 400 events for 1 TeV Z' 0.08 400 3

Significance level (in term of sigma's) for pairwise comparisons of Z' models:

Model	$\mathbf{Z}_{\mathbf{ALRM}}$	Z_{χ}	Z_η	Z_ψ	$Z_{\rm SSM}$	$\mathrm{Z}_{\mathrm{LRM}}$
$\mathbf{Z}_{\mathrm{ALRM}}$	<u></u>	0.0	5.3	6.6	7.6	9.4
Z_{χ}	0.0	_	3.7	4.6	5.3	6.6
Z_η	2.7	2.6	-	0.7	1.2	2.1
Z_ψ	3.3	3.3	0.7		0.5	1.4
$\rm Z_{SSM}$	6.8	6.8	2.1	0.9	-	1.6
Z_{LRM}	6.8	6.8	3.0	2.1	1.3	×

_	at	M=1	TeV,	L=10 fb ⁻¹
			,	

0.2

0.1

							22
Model	Z _{ALRM}	Z_χ	Z_η	Z_ψ	$Z_{\rm SSM}$	Z_{LRM}]
$\mathbf{Z}_{\mathrm{ALRM}}$		0.3	2.5	3.0	3.2	4.2]
Z_{χ}	0.2	-	1.4	1.7	1.8	2.4]
Z_η	1.2	1.0	10 — 11	0.3	0.4	0.8	at
Z_ψ	1.4	1.3	0.3		0.1	0.5	
$\rm Z_{SSM}$	2.7	2.5	0.6	0.2	-	0.8	
Z_{LRM}	2.8	2.6	1.1	0.8	0.6		

at M=3 TeV, L=400 fb⁻¹

I. Belotelov et al. CMS NOTE 2005/104

---- qq -> Z' -> ff ---- qq -> G* -> ff ----- qa -> G* -> ff

If new resonance is discovered

Characterisation of its spin and coupling using:

- Production and decay probabilities and distributions: for example $G{\rightarrow}\gamma\gamma$
- Angular distribution of the decay product : useful for spin discrimination

Spin-1 States: Z from extended gauge models, ZKK Spin-2 States: RS1-graviton

Method: unbinned likelihood ratio statistics incorporating the angles in of the decay products the Collins-Soper frame consider only the even term in $\cos\theta*$ (sign of $\cos\theta*$ is random)

Spin discrimination

 N_s

2σ Spin-1 Exclusion (10 fb-1)

2σ Spin-1 Exclusion (300 fb-1)

2σ Spin-1 Exclusion (100 fb-1)

Graviton Mass (GeV)

 N_{b}

 $\mathcal{L}dt$, fb⁻

The statistical technique has been applied to fully simu/reco events:

B. Clerbaux Euro-GDR SUSY 2007 Brussels - 14/11/2006 —

High mass dijets

K. Gumus et al. CMS NOTE 2006/070

Search for dijet resonance (pp $\rightarrow X \rightarrow jet+jet$)

Sensitivity to observing narrow resonance signal on a high QCD bg - Challenging channel: large QCD bg and often limited dijet mass resolution Goal: as generic an analysis as possible Give the CMS cross section sensibility for 95% CL and 5 σ discovery

Compare to 8 benchmark models: First five: produced via strong interactions last three:electro-weak coupling – lower cross-section no 5σ discovery potential but exclusion at 95%CL |η|(jet)<1

Resonance Model	95% CL Excluded Mass (TeV/c^2)			5σ Discovered Mass (TeV/ c^2)		
	$100 {\rm pb}^{-1}$	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$	$100 {\rm pb^{-1}}$	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$
Excited Quark	0.7 - 3.8	0.7 - 4.8	0.7 - 5.8	0.7 - 2.9	0.7 - 3.9	0.7 - 5.0
Axigluon or Coloron	0.7 - 3.6	0.7 - 4.6	0.7 - 5.6	0.7 - 2.6	0.7 - 3.8	0.7 - 4.8
E_6 diquark	0.7 - 4.1	0.7 - 5.6	0.7 - 7.0	0.7 - 2.8	0.7 - 4.5	0.7 - 6.0
Color Octet Technirho	0.7 - 2.4	0.7 - 3.4	0.7 - 4.5	0.7 - 1.8	0.7 - 2.6	0.7 - 3.6
Randall-Sundrum	0.7 - 1.1	0.7 - 1.7	0.7 - 1.7	0.7 - 0.8	0.7 - 0.8	0.7 - 0.8
Graviton			1.9 - 2.4			
W′	0.7 - 1.0	0.7 - 1.0	0.7 - 1.0	N/A	N/A	2.0 - 2.3
		1.2 - 2.1	1.2 - 3.4	105	0.55	
Ζ'	N/A	1.2 - 1.5	1.3 - 1.5	N/A	N/A	N/A
			1.9 - 2.6			

