Moduli stabilization and new low-energy spectra

Alberto Romagnoni

Laboratoire de Physique Théorique, Université Orsay-Paris Sud Centre de Physique Théorique, École Polytechnique

> EURO-GDR SUSY 2007 Bruxelles, November 12th, 2007

E. Dudas, Y. Mambrini, S. Pokorski, A.R. To appear

Motivations and Ingredients

MSSM embedded in String theory, Extra-Dimensions Models, ... but new things appear:

Moduli

- they parametrize "flat directions"
- they have to be taken into account and stabilized (typically by nonperturbative effects)

New Symmetries

In particular new U(1)_X gauge symmetries and new charged fields Φ_i

- $\hookrightarrow \ \text{Spontaneous SUSY breaking in a new hidden sector}$
- \hookrightarrow Communicate it to the MSSM

Consider the modulus *T* parametrizing the volume of the compact space.

T can carry $U(1)_X$ charge \Rightarrow it transforms as a Goldstone boson

• mass to U(1)_X gauge boson

anomalies

Gauge invariance + SUSY

- Fayet-Iliopoulos term depending on T
- constraints for terms in the superpotential

General Framework

Type IIB compactified on orientifold \rightarrow Supergravity in 4D (KKLT-like model)

Two main ingredients:

- Kahler potential: $K = -3\ln(T + \overline{T}) + |\Phi_-|^2 + |\Phi_+|^2 + K_{MSSM}$
- Superpotential: $W = W_0 + e^{-bT} \Phi_-^q + m \Phi_+ \Phi_-$

The scalar potential is $V = e^{K}(|F_{T}|^{2} + |F_{+}|^{2} + |F_{-}|^{2} - 3|W|^{2}) + g_{T}^{2}D^{2}$

FI mechanism \rightarrow spontaneous SUSY Breaking: $D, F_i \neq 0$

First Phenomenological Results

Uplift

Parameters in the superpotential fixed by some phenomenological requirements:

•
$$m_{3/2} \sim \frac{W}{M_p^2} \Rightarrow \text{ fix } W_0$$

• Imposing
$$\Lambda_{cosm} = 0$$

 $\Rightarrow \text{ fix } m$

 $m_{1/2} \sim \frac{F_T}{T} \qquad m_0 \sim m_{3/2}$

Usually F_T small.....here: $m_{1/2} \lesssim m_0 \sim m_{3/2} \sim \text{TeV} \qquad D \sim (100 \text{ TeV})^2$

Anomalies & Gauge Messengers

If *T* couples to the SM gauge fields, since it is charged under $U(1)_X$, its shift generates mixed $U(1)_X - G_a^2$ anomalies

$$(G_a = \mathrm{SU}(3), \, \mathrm{SU}(2)_L, \, \mathrm{U}(1)_Y)$$
$$\int d^2\theta \, T \, W_a^{\alpha} \, W_{\alpha \ a} \ \rightarrow \ \# \, F_a^{\mu\nu} \, \widetilde{F}_{\mu\nu \ a}$$

Possibilities :

- MSSM fields charged under U(1)_X ⇒ problems: large masses for squarks and sleptons ~ √D, tachyonic directions,...
- MSSM fields uncharged but additional fields M, \widetilde{M}

 M, \widetilde{M} "Messengers" fields introduced in Gauge Mediated Supersymmetry Breaking Perturbative gauge coupling unification $\rightarrow M, \widetilde{M} \in SU(5)$

Gauge Mediation & Soft masses

GMSB: Messengers M, \tilde{M} couple to Susy Breaking hidden sector (superfield S)

$$\lambda \int d^4\theta \, S \, M \, \widetilde{M}$$

 $\hookrightarrow mediation \ of \ Susy \ Breaking \ at \ perturbative \ level$

Gauge Mediation & Uplift + D-term

If $D = \operatorname{STr} M_{Mess}^2 \neq 0 \quad \Rightarrow$ different GMSB result for scalars

[Poppitz, Trivedi, Phys.Lett. B 401(1997)38]

$$(\widetilde{m}_0^{GMSB})^2 \sim (...) + \frac{g_a^4}{128\pi^4} D\left[c - \ln\left(\frac{\Lambda_{UV}^2}{m_{Mess}^2}\right)\right]$$

for *D* and $\frac{\Lambda_{UV}^2}{m_{Mess}^2}$ big enough $\rightarrow (\widetilde{m}_0^{GMSB})^2$ negative

Our model: $(\widetilde{m}_0^{GMSB})^2 < 0$ and $|(\widetilde{m}_0^{GMSB})^2| \sim m_{3/2}^2 \sim (\text{TeV})^2$

Nontrivial interplay:

- Gravity contribution is universal
- (*m*₀^{GMSB})² depends on couplings between scalars and gauge vectors
- $\Rightarrow Squarks can be lighter than sleptons at high energy \\ \hookrightarrow measurable effects at low energy after RG flow$

Conclusions & Outlooks

Results

- Example of a **non-decoupled** uplift: modulus contribution F_T to SUSY Breaking is not negligible
 - \Rightarrow gauginos masses **comparable** to the scalars and gravitino masses
- Natural mixing between **gauge** & **gravity** mediation mechanisms
- Original phenomenological signature testable at LHC: **spectrum "compressed"**, squarks **lighter** than sleptons (H.E.)

Work in progress

- Can *F*_T be increased?
- Systematic study of the phenomenology of the model