Higgs decays into sfermions at 1 loop

K. Kovařík

Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France

EURO-GDR Bruxelles, 2007

Outline

Overview of the Calculation

- Diagrammatics
- Renormalization Scheme

- SPA & Tools
- Results

SPA numerical analysis 000000 Summary

Decays of Higgs bosons into sfermions All decay channels

 Decays of Higgs bosons h⁰, H⁰, A⁰, H[±] into all possible sfermions including crossed channels

$$\begin{split} h^0, H^0, A^0 &\to \tilde{f}_i \tilde{f}_j \qquad H^{\pm} \to \tilde{f}_i \tilde{f}_j' \\ \tilde{f}_i &\to (h^0, H^0, A^0) \tilde{f}_j \qquad \tilde{f}_i \to H^{\pm} \tilde{f}_j' \end{split}$$

SPA numerical analysis 000000 Summary

Decays of Higgs bosons into sfermions Diagrams and contributions

• Everything at one-loop incl. full QCD & EW corrections and gluon/photon radiation

Overview of the Calculation ○○●○ SPA numerical analysis

Summary

Renormalization Scheme On-shell scheme and its problems

• On-shell renormalization

- Couterterms δh_f , δA_f , $\delta \mu$, δ tan β
- For large $\tan \beta \rightarrow \delta m_f$, δA_f numerically large for bottom-type squarks

Overview of the Calculation ○○●○ SPA numerical analysis

Summary

Renormalization Scheme On-shell scheme and its problems

• On-shell renormalization

- Couterterms δh_{f} , δA_{f} , $\delta \mu$, $\delta \tan \beta$
- For large $\tan \beta \rightarrow \delta m_f$, δA_f numerically large for bottom-type squarks

Overview of the Calculation ○○●○ SPA numerical analysis

Summary

Renormalization Scheme On-shell scheme and its problems

On-shell renormalization

- Couterterms δh_f , δA_f , $\delta \mu$, $\delta \tan \beta$
- For large $\tan\beta \rightarrow \delta m_f$, δA_f numerically large for bottom-type squarks

Overview of the Calculation ○○○● SPA numerical analysis

Summary

Renormalization Scheme Improvements - A_f & m_f running

- $\bullet\,$ The counterterm δA_f fixed via the sfermion mixing matrix
- Large δA_f for large values of tan β

$$\delta A_f = \delta \left(m_f \mu \left\{ \begin{matrix} \cot \beta \\ \tan \beta \end{matrix} \right\} \right) - \delta m_f + \frac{1}{2} \left(\delta m_{\tilde{f}_1}^2 - \delta m_{\tilde{f}_2}^2 \right) \sin 2\theta_{\tilde{f}_1}$$

$$+ \left(m_{\tilde{f}_1}^2 - m_{\tilde{f}_2}^2 \right) \cos 2\theta_{\tilde{f}} \, \delta\theta_{\tilde{f}}$$

• Use of A_f & m_f running necessary

$$A_f^{\overline{\mathrm{DR}}} + \delta^{\overline{\mathrm{DR}}} A_f = A_f^{OS} + \delta^{OS} A_f$$

 \rightarrow change the renormalization of the sfermion mixing angle

Overview of the Calculation ○○○● SPA numerical analysis

Summary

Renormalization Scheme Improvements - A_f & m_f running

- $\bullet\,$ The counterterm δA_f fixed via the sfermion mixing matrix
- Large δA_f for large values of tan β

$$\delta A_f = \delta \left(m_f \mu \left\{ \begin{matrix} \cot \beta \\ \tan \beta \end{matrix} \right\} \right) - \delta m_f + \frac{1}{2} \left(\delta m_{\tilde{f}_1}^2 - \delta m_{\tilde{f}_2}^2 \right) \sin 2\theta_{\tilde{f}_1}$$

$$+ \left(m_{\tilde{f}_1}^2 - m_{\tilde{f}_2}^2 \right) \cos 2\theta_{\tilde{f}} \, \delta\theta_{\tilde{f}}$$

• Use of A_f & m_f running necessary

$$A_f^{\overline{\mathrm{DR}}} + \delta^{\overline{\mathrm{DR}}} A_f = A_f^{OS} + \delta^{OS} A_f$$

 \rightarrow change the renormalization of the sfermion mixing angle

Overview of the Calculation ○○○● SPA numerical analysis

Summary

Renormalization Scheme Improvements - A_f & m_f running

- $\bullet\,$ The counterterm δA_f fixed via the sfermion mixing matrix
- Large δA_f for large values of tan β

$$\delta A_f = \delta \left(m_f \mu \left\{ \begin{matrix} \cot \beta \\ \tan \beta \end{matrix} \right\} \right) - \delta m_f + \frac{1}{2} \left(\delta m_{\tilde{f}_1}^2 - \delta m_{\tilde{f}_2}^2 \right) \sin 2\theta_{\tilde{f}_1}$$

$$+ \left(m_{\tilde{f}_1}^2 - m_{\tilde{f}_2}^2 \right) \cos 2\theta_{\tilde{f}} \, \delta\theta_{\tilde{f}}$$

• Use of $A_f \& m_f$ running necessary

$$A_{f}^{\overline{\mathrm{DR}}} + \delta^{\overline{\mathrm{DR}}} A_{f} = A_{f}^{OS} + \delta^{OS} A_{f}$$

 \rightarrow change the renormalization of the sfermion mixing angle

SPA Project Numerical analysis

SPA CONVENTION

- The masses of the SUSY particles and Higgs bosons are defined as pole masses.
- All SUSY Lagrangian parameters, mass parameters and couplings, including tan β , are given in the $\overline{\text{DR}}$ scheme and defined at the scale $\tilde{M} = 1$ TeV.
- Gaugino/higgsino and scalar mass matrices, rotation matrices and the corresponding angles are defined in the DR scheme at *M*, except for the Higgs system in which the mixing matrix is defined in the on-shell scheme, the momentum scale chosen as the light Higgs mass.
- The Standard Model input parameters of the gauge sector are chosen as G_F , α , M_Z and $\alpha_s^{\rm MS}(M_Z)$. All lepton masses are defined on-shell. The *t* quark mass is defined on-shell; the *b*, *c* quark masses are introduced in $\overline{\rm MS}$ at the scale of the masses themselves while taken at a renormalization scale of 2 GeV for the light *u*, *d*, *s* quarks.

SPA numerical analysis

SPA Project Numerical analysis

SPS1a' benchmark point

g′	0.36354	M1	103.01
g	0.64804	M_2	192.84
gs	1.08412	M_3	571.44
Y_{τ}	0.09958	$A_{ au}$	-249.8
Yt	0.88176	At	-487.7
Υ _b	0.13143	Ab	-766.9
μ	362.35	tan eta	10.0
$M_{L_1}^2$	$3.7821 \cdot 10^{4}$	$M_{L_2}^2$	3.7513 · 10 ⁴
$M_{E_1}^2$	$1.8399\cdot 10^{4}$	$M_{E_3}^2$	$1.7773 \cdot 10^4$
$M_{Q_1}^2$	$28.177 \cdot \mathbf{10^4}$	$M_{Q_3}^2$	$23.416 \cdot 10^{4}$
$M_{U_1}^2$	$26.198\cdot 10^4$	$M_{U_3}^2$	$16.734 \cdot 10^4$
$M_{D_1}^{2^{-1}}$	$25.972\cdot 10^4$	$M_{D_3}^2$	$25.682\cdot 10^{4}$
$M_{H_1}^2$	3.2864 · 10 ⁴	$M_{H_2}^2$	$-11.804 \cdot 10^{4}$

- In MSSM beyond tree-level parameters interdependent
- Parameter plot implies varying a parameter → more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- \bullet SPheno transforms SPA to pure $\overline{\rm DR}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

- In MSSM beyond tree-level parameters interdependent
- Parameter plot implies varying a parameter → more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- ullet SPheno transforms SPA to pure $\overline{\mathrm{DR}}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

- In MSSM beyond tree-level parameters interdependent
- Parameter plot implies varying a parameter → more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- ullet SPheno transforms SPA to pure $\overline{\mathrm{DR}}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

- In MSSM beyond tree-level parameters interdependent
- \bullet Parameter plot implies varying a parameter \rightarrow more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- ullet SPheno transforms SPA to pure $\overline{\mathrm{DR}}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

- In MSSM beyond tree-level parameters interdependent
- Parameter plot implies varying a parameter → more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- ullet SPheno transforms SPA to pure $\overline{\mathrm{DR}}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

- In MSSM beyond tree-level parameters interdependent
- Parameter plot implies varying a parameter → more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- ullet SPheno transforms SPA to pure $\overline{\mathrm{DR}}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

- In MSSM beyond tree-level parameters interdependent
- Parameter plot implies varying a parameter → more parameters are actually varied
- Calculation in on-shell scheme (with A_f and m_f running) transformation from SPA necessary
- SPA parameters varied and transformed for each single parameter point
- \bullet SPheno transforms SPA to pure $\overline{\rm DR}$ parameter set
- DRbar20S transforms DR parameter set to on-shell input parameters

 ${
m SPS1a'}$ parameter shift - $m_{D_3}
ightarrow 150~GeV$ $m_{A^0}
ightarrow 1000~GeV$

 $\begin{array}{c} \begin{array}{c} \text{Overview of the Calculation} & \begin{array}{c} \text{SPA numerical analysis} & \begin{array}{c} \text{Summary} \\ \text{OOOO} & \end{array} \end{array} \\ \\ \mathcal{A}^0 \rightarrow \tilde{t}_1 \tilde{t}_2 \end{array}$

 ${
m SPS1a'}$ parameter shift - $m_{U_3}
ightarrow 150~GeV \quad m_{A^0}
ightarrow 1000~GeV$

SPA numerical analysis 00000● Summary

$H^+ \rightarrow \tilde{t}_1 \tilde{b}_2$

SPS1a' parameter shift - $m_{A^0}
ightarrow 1000~GeV$

Summary

- All Higgs decays into sfermions (or crossed-channels) calculated to one-loop
- Pure on-shell scheme not appropriate A_f, m_f taken running
- SPA analysis for decays possible for on-shell renormalization scheme using SPheno & DRbar20S
- Outlook
 - Inclusion of the result in a package calculating all Higgs decay-channels to one-loop

