NLO Event Simulation for Chargino Production at the ILC

based on hep-ph/0607127, hep-ph/0610401

Tania Robens in collaboration with W. Kilian, J. Reuter

RWTH Aachen

EuroGDR SUSY 2007, Brussels

EuroGDR SUSY 2007, Brussels

Introduction and Motivation

- Charginos and Neutralinos in the MSSM
- Experimental accuracy and NLO results

Inclusion of NLO results in WHIZARD

- Implementation in WHIZARD
- Photons: fixed order vs resummation
- Results

3 Summary and Outlook

Tania Robens NLO Event Simulation for Chargino Production at the ILC

Charginos and Neutralinos in the MSSM

Chargino and Neutralino sector: Reconstruction of SUSY parameters

- Charginos χ̃[±]_i and Neutralinos χ̃⁰_i: superpositions of gauge and Higgs boson superpartners
- Chargino/ Neutralino sector:

 $\tan \beta$, μ (Higgs sector), M_1 , M_2 (soft breaking terms)

can be reconstructed from

masses of $\widetilde{\chi}_1^\pm,\,\widetilde{\chi}_2^\pm,\,\widetilde{\chi}_1^0$, 2 σ in the $\widetilde{\chi}^\pm$ sector

(Choi ea 98, 00, 01)

- low-scale parameters + evolution to high scales (RGEs):
 ⇒ hint at SUSY breaking mechanism (Blair ea, 02)
- requires high precision in ew-scale parameter determination

Tania Robens NLO Event Simulation for Chargino Production at the ILC

- ILC: future e⁺e⁻ collider, √s = 500 GeV (1 TeV)
 "clean" environment, low backgrounds ⇒ high precision
- Charginos: (typically) light in the MSSM \Rightarrow easily accessible at colliders (ILC/ LHC) \Leftarrow
- LO production at the ILC:

decays: typically long decay chains

e.g.
$$e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0 \right)$$

Tania Robens NLO Event Simulation for Chargino Production at the ILC

Experimental accuracy and NLO results

Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

combined LHC + ILC: %

same $\ensuremath{\mathcal{O}}$ errors from fitting routines determining SUSY parameters

• Theory:

Full NLO SUSY corrections for $\sigma(ee \rightarrow \tilde{\chi} \tilde{\chi})$ at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)

 \Rightarrow include complete NLO contributions in analyses \Leftarrow

Tania Robens NLO Event Simulation for Chargino Production at the ILC

Experimental accuracy and NLO results

Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

combined LHC + ILC: %

same $\ensuremath{\mathcal{O}}$ errors from fitting routines determining SUSY parameters

• Theory:

Full NLO SUSY corrections for $\sigma(ee \rightarrow \tilde{\chi} \tilde{\chi})$ at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)

 \Rightarrow include complete NLO contributions in analyses \Leftarrow

Tania Robens NLO Event Simulation for Chargino Production at the ILC

Implementation in WHIZARD

From $\sigma_{\rm tot}$ to Monte Carlo event generators

MC event generators: Generate event samples (same form as experimental outcome)

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects,

(e.g. Hagiwara ea, 05)

\Rightarrow include NLO results in Monte Carlo Generators \Leftarrow

- MC Generator WHIZARD (Kilian ea, arXiv:0708.4233 [hep-ph]):
- so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation,...

Tania Robens NLO Event Simulation for Chargino Production at the ILC

・ 通 ・ く 言 ・ 言 ・ 言 ・ う へ で
EuroGDR SUSY 2007, Brussels

Implementation in WHIZARD

From $\sigma_{\rm tot}$ to Monte Carlo event generators

MC event generators: Generate event samples (same form as experimental outcome)

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects,

(e.g. Hagiwara ea, 05)

 \Rightarrow include NLO results in Monte Carlo Generators \Leftarrow

- MC Generator WHIZARD (Kilian ea, arXiv:0708.4233 [hep-ph]):
- so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation,...

Tania Robens NLO Event Simulation for Chargino Production at the ILC

EuroGDR SUSY 2007, Brussels

Implementation in WHIZARD

NLO cross section contributions

$\sigma_{\rm tot}$ contributions and dependencies:

- $\sigma_{\rm born}$
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{\text{virt}}(\lambda)$
- emission of soft/ hard collinear/ hard non-collinear photons:

 $\sigma_{\mathsf{soft}}(\Delta E_{\gamma}, \lambda) + \sigma_{\mathsf{hc}}(\Delta E_{\gamma}, \Delta \theta_{\gamma}) + \sigma_{2 \to 3}(\Delta E_{\gamma}, \Delta \theta_{\gamma})$

• higher order initial state radiation: $\sigma_{\text{ISR}} - \sigma_{\text{ISR}}^{\mathcal{O}(\alpha)}(Q)$ λ : photon mass , ΔE_{γ} : soft cut , $\Delta \theta_{\gamma}$: collinear angle

EuroGDR SUSY 2007, Brussels

Implementation in WHIZARD

Including FormCalc $\mathcal{O}(lpha)$ results in WHIZARD

• use FeynArts / FormCalc generated code for

- $\begin{array}{lll} \mathcal{M}_{\mathsf{virt}}(\lambda) & : & \mathsf{virtual corrections} \\ f_s(\Delta E_\gamma, \lambda) & : & \mathsf{soft photon factor} \\ (\mathcal{M}_{\mathsf{born}} & : & \mathsf{born contribution}) \end{array}$
- fixed order: integrate over effective matrix element:

 $|\mathcal{M}_{\mathsf{eff}}|^2(\Delta E_{\gamma}) \,=\, (1 + \mathit{f_s}(\Delta E_{\gamma},\,\lambda))\,|\mathcal{M}_{\mathsf{born}}|^2 + 2\,\mathit{Re}(\mathcal{M}_{\mathsf{born}}\,\mathcal{M}^*_{\mathsf{virt}}(\lambda))$

 ΔE_{γ} : soft photon cut, λ : photon mass

• in practice: create library from FormCalc code, link this to WHIZARD

Photons: fixed order vs resummation

(1): Fixed $\mathcal{O}(\alpha)$ contributions

- \bullet integrate $|\mathcal{M}_{eff}|^2$ (born/ virtual/ soft photonic part)
- \bullet hard collinear photons: collinear approximation $(\mathcal{M}_{\mathsf{born}})$
- hard non-collinear photons: explicit $e e \to \widetilde{\chi} \, \widetilde{\chi} \, \gamma$ process $(\mathcal{M}^{2 \to 3}_{\mathrm{born}})$
- corresponds to analytic results in literature (Fritzsche ea/ Öller ea)

Appendix

Photons: fixed order vs resummation

(1): Fixed $\mathcal{O}(\alpha)$ contributions

- \bullet integrate $|\mathcal{M}_{eff}|^2$ (born/ virtual/ soft photonic part)
- \bullet + hard collinear photons: collinear approximation $(\mathcal{M}_{\mathsf{born}})$
- + hard non-collinear photons: explicit $e e \to \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}^{2 \to 3}_{born})$
- corresponds to analytic results in literature (Fritzsche ea/ Öller ea)

 $\begin{array}{ll} \mbox{problem: too low energy cuts: } |\mathcal{M}_{eff}|^2 < 0 \\ \Rightarrow \mbox{ use negative weights } \\ \mbox{or set } \mathcal{M}_{eff} = 0 \end{array}$

event generator specific problem $(\sigma_{tot} \ge 0)$

Photons: fixed order vs resummation

Tania Robens

(2): Resumming leading logs to all orders

• idea: subtract $\mathcal{O}(\alpha)$ soft + virtual collinear contributions in \mathcal{M}_{off} :

$$\begin{split} |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2 &= \left(1 + f_{\mathsf{s}}(\Delta E_{\gamma})\right) |\mathcal{M}_{\mathsf{born}}|^2 + 2 \operatorname{\mathit{Re}}(\mathcal{M}_{\mathsf{born}} \, \mathcal{M}_{\mathsf{virt}}^*) \\ &- 2 \, f_{\mathsf{s}}^{\mathit{ISR},\mathcal{O}(\alpha)}(\Delta E_{\gamma}) \, |\mathcal{M}_{\mathsf{born}}|^2 \end{split}$$

o fold this with ISR structure function:

$$\int d\Gamma \int_0^1 dx_1 \int_0^1 dx_2 f^{\mathsf{ISR}}(x_1) f^{\mathsf{ISR}}(x_2) |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2(s, x_i))$$

• f^{ISR}(x): Initial state radiation (Jadach, Skrzypek, Z.Phys. 1991) \Rightarrow describes collinear (real + virtual) photons in leading log accuracy \Leftarrow • $f_{\epsilon}^{\mathsf{ISR},\mathcal{O}(\alpha)}$: soft integrated $\mathcal{O}(\alpha)$ contribution NLO Event Simulation for Chargino Production at the ILC EuroGDR SUSY 2007, Brussels

 \Rightarrow new higher order effects \Leftarrow

• additional possibility: also fold 2 \rightarrow 3 process with ISR ("res+")

Tania Robens NLO Event Simulation for Chargino Production at the ILC

Results

Results: cross sections

agrees with results in the literature (Fritzsche ea, Öller ea)

Results

A closer look: ΔE_{γ} dependence of σ_{tot}

- semianalytic (FormCalc): tests soft approximation, shifts : 2 - 5 % ($\Delta E_{\gamma} \leq 10 \,\text{GeV}$)
- fixed order result (WHIZARD): same as 'sa' for $\Delta E_{\gamma} \ge 3 \, \text{GeV}$, smaller values: $|\mathcal{M}|_{\text{eff}}|^2 \le 0$ effects

Tania Robens NLO Event Simulation for Chargino Production at the ILC

EuroGDR SUSY 2007, Brussels

9 (P

Appendix

Results

ΔE_{γ} dependence: resummation

In summary:

shift in ΔE_{γ} leads to % effects, match ILC accuracy \Rightarrow careful choice of ΔE_{γ} , method important "best" choice: fully resummed version with low energy cut

Tania Robens NLO Event Simulation for Chargino Production at the ILC

Results: simulated events

simulation results: angular distributions

Born, fixed order, resummation

!! more than 1 σ deviation !! $\sqrt{\textit{n}_{\max}}$ \approx $\mathcal{O}(10^2);$ <code>nbins</code> = 20

Tania Robens NLO Event Simulation for Chargino Production at the ILC

(日) 〈言〉〈言〉 言 のへぐ EuroGDR SUSY 2007, Brussels

EuroGDR SUSY 2007, Brussels

Results: simulated events

Angular distributions: higher orders

 N_{res}^+ : resummation, additionaly 2 \rightarrow 3 folded w ISR; most complete also higher order contributions statistically significant

Results: higher order effects

\sqrt{s} dependence of different higher order contributions

Born+: only Born folded w ISR (standard way in the literature), fully resummed result: subtraction, also fold $2 \rightarrow 3$ part with ISR difference between Born+ and fully resummed result: multiple photon emission from interaction term

Summary and Outlook

- Chargino/ neutralino sector of MSSM: high precision in SUSY paramater analysis at EW scale (% at ILC)
- same size/ larger NLO corrections
- \Rightarrow include NLO results in Monte Carlo Event generators
 - resummation method for photons allows lower soft cuts/ inclusion of higher order contributions
 - NLO as well as higher order contributions significant !!
 - next steps: include NLO corrections to $\tilde{\chi}$ decays, non-factorizing contributions (start with photonic corrections in the double-pole approximation)

EuroGDR SUSY 2007, Brussels

• general interface to FormCalc generated matrix elements: extendable to other processes...

QR

EuroGDR SUSY 2007, Brussels

cut dependencies: $\Delta \theta_{\gamma}$

tests: collinear photon approximation

 $\sigma_{\rm tot}$ again larger for resummation method for higher angles: second order ISR effects between 0.05° and 0.1° $(\mathcal{O}(\%))$

photon approximations

η , f_s , hard collinear approximation, $ISR^{O(\alpha)}$

•
$$\eta = \frac{2\alpha}{\pi} \left(\log \left(\frac{Q^2}{m_e^2} \right) - 1 \right) \quad (Q = \text{scale of process})$$

• $f_s = -\frac{\alpha}{2\pi} \sum_{i,j=e^{\pm}} \int_{|\mathbf{k}| \le \Delta \mathbf{E}} \frac{d^3k}{2\omega_k} \frac{(\pm) p_i p_j Q_i Q_j}{p_i k p_j k},$
(Denner 1992)
 $\omega_k = \sqrt{\mathbf{k}^2 + \lambda^2}, p_i \text{ initial/ final state momenta, } k: \gamma$

momentum

• hard collinear factor (\pm helicity conserving/ flipping):

$$f^{+}(x) = \frac{\alpha}{2\pi} \frac{1+x^2}{(1-x)} \left(\ln\left(\frac{s(\Delta\theta)^2}{4m^2}\right) - 1 \right), f^{-}(x) = \frac{\alpha}{2\pi} x.$$
(Dittmaier 1993)

۲

$$f_{s}^{ISR,\mathcal{O}(\alpha)} = \left[\int_{x_{0}}^{1} f_{ISR}(x) \, dx\right]_{\mathcal{O}(\alpha)} = \frac{\eta}{4} \left(2\ln(1-x_{0}) + x_{0} + \frac{1}{2}x_{0}^{2}\right)$$

Tania Robens NLO Event Simulation for Chargino Production at the ILC

soft region effects

ISR in its full beauty (Skrzypek ea, 91)

$$\begin{split} \Gamma_{ee}^{LL}(x,Q^2) &= \frac{\exp\left(-\frac{1}{2}\eta\gamma_E + \frac{3}{8}\eta\right)}{\Gamma\left(1 + \frac{\eta}{2}\right)} \frac{\eta}{2} \left(1 - x\right)^{\left(\frac{\eta}{2} - 1\right)} \\ &- \frac{\eta}{4} \left(1 + x\right) + \frac{\eta^2}{16} \left(-2\left(1 - x\right)\log(1 - x) - \frac{2\log x}{1 - x} + \frac{3}{2}\left(1 + x\right)\log x - \frac{x}{2} \right) \\ &- \frac{5}{2}\right) + \left(\frac{\eta}{2}\right)^3 \left[-\frac{1}{2}(1 + x)\left(\frac{9}{32} - \frac{\pi^2}{12} + \frac{3}{4}\log(1 - x) + \frac{1}{2}\log^2(1 - x)\right) \right. \\ &- \frac{1}{4}\log x \log(1 - x) + \frac{1}{16}\log^2 x - \frac{1}{4}\text{Li}_2(1 - x)\right) \\ &+ \frac{1}{2}\frac{1 + x^2}{1 - x}\left(-\frac{3}{8}\log x + \frac{1}{12}\log^2 x - \frac{1}{2}\log x \log(1 - x)\right) \\ &- \frac{1}{4}\left(1 - x\right)\left(\log(1 - x) + \frac{1}{4}\right) + \frac{1}{32}\left(5 - 3x\right)\log x\right]; \eta = \frac{2\alpha}{\pi}\left(\log\left(\frac{Q^2}{m_e^2}\right) - 1 \right) \end{split}$$

Tania Robens NLO Event Simulation for Chargino Production at the ILC

► CE CONTROL CONT

,

Appendix

SQC.

EuroGDR SUSY 2007, Brussels

Some NLO matrix elements

Some NLO matrix elements

< 🗆

Appendix

Some NLO matrix elements

Some NLO matrix elements

Tania Robens NLO Event Simulation for Chargino Production at the ILC

∰ ৷ < ≣ ৷ < ≣ ৷ ≣ · ৩৭.৫ EuroGDR SUSY 2007, Brussels

< n

- mSUGRA scenario
- according to Snowmass Points (Allanach ea, 02), in agreement with cosmology data/ WMAP ($\tilde{\chi}_1^0$ as DM candidate)

