Techniques for setting limits: frequentist approach

Fabrice Couderc fabrice.couderc@cea.fr

Overview

dapn

saclay

- Introduction
- Minimizing systematic effects using profile likelihood techniques
- A word on CL_s
- Conclusions

What do we want to know ?

- We observe \mathbf{x} , realization of the random variable \mathbf{X} :
 - Is X due to background only" (hypothesis \mathcal{H}_{b})?
 - Is \mathbf{X} due to or 'signal + background" (hypothesis \mathcal{H}_{s+b})?
- Likelihood: $LH(\mathcal{H}; \mathbf{x}) \propto P(\mathbf{X} = \mathbf{x} | \mathcal{H})$. [requires: $P(\mathbf{X} | \mathcal{H})$]
- Law of likelihood: We have evidence that x supports \mathcal{H}_A over \mathcal{H}_B if $LH(\mathcal{H}_A; x) > LH(\mathcal{H}_B; x)$. The strength of that evidence is measured by the ratio **Q**:

 $\mathbf{Q} = \mathsf{LH}(\mathcal{H}_{\mathsf{A}}; \mathbf{x})/\mathsf{LH}(\mathcal{H}_{\mathsf{B}}; \mathbf{x})$

 $\mathbf{Q} > \mathbf{1}$ supports \mathcal{H}_{A} over \mathcal{H}_{B} $\mathbf{Q} < \mathbf{1}$ supports \mathcal{H}_{B} over \mathcal{H}_{A}

- Use this ratio Q to answer the questions:
 - Are data compatible with background ? To which extent ?
 - (If yes) Which signal models are compatible with data ?
 - (If yes) Which signal models are **not** supported by data ?

F. Couderc, DAPNIA/SPP

- We have: a sensitive test $Q = LH(\mathcal{H}_{s+b}; \mathbf{x})/LH(\mathcal{H}_{b}; \mathbf{x})$ and its realization in actual data: q_{obs}
- To quantify the strength of the evidence, whether q_{obs} >1 (signal like) or q_{obs} <1 (background like), we miss two probabilities :
 - P_b (Q > q_{obs}) = 1 CL_b : probability that an experiment with background only would fluctuate as high" as in actual data.
 - $P_{s+b}(Q < q_{obs}) = CL_{s+b}$: probability that an experiment with signal +background would fluctuate as fow"as in actual data.
- The 'Frequentist''solution: two sets of MC experiments
 - MC experiments following $\mathcal{H}_{s+b} \Rightarrow P_{s+b}(Q < q)$
 - MC experiments following $\mathcal{H}_{b} \Rightarrow P_{b}$ (Q < q)

Some likelihood of interests

Know only the expected number of events (good old days...) Expect μ under hypothesis \mathcal{H} Observe: N pure counting $LH(N;\mu) = e^{-\mu} \frac{\mu^{N}}{N!}$

Know shapes + expected number of events (usual one)

Shape follows the (normalized) continuous distribution with $\int f = 1$ (f = pdf of X)

"unbinned"
$$LH(x = (x_1, ..., x_N); \mu, f) = e^{-\mu} \frac{\mu^N}{N!} \prod_{i=1}^N f(x_i)$$

"binned" version
$$LH(N = (N_1, ..., N_{nbin}); \mu = (\mu_1, ..., \mu_2)) = \prod_{ib=1}^{nbin} e^{-\mu_{ib}} \frac{\mu_{ib}^{N_{ib}}}{N_{ib}}$$

First example

- Technically, one uses -2 lnQ:
 - Technically more convenient (no more exponentials, $\prod -\Sigma$)
 - -2 In LH follows approximately a χ^2 distribution
- Compute -2 InQ prob. density function (pdf) for 's+b"exp., 'b only"exp.:
 - Compare them to data: CL_{s+b}[obs] , 1-CL_b[obs]
 - Get expected sensitivities (using q_{median}): $\langle CL_{s+b} \rangle_{b}$, $\langle 1-CL_{b} \rangle_{s+b}$
- Example, counting experiment (using corresponding LH)

First example

- Technically, one uses -2 lnQ:
 - Technically more convenient (no more exponentials, $\prod \sum$)
 - -2 In LH follows approximately a χ^2 distribution
- Compute -2 InQ prob. density function (pdf) for 's+b"exp., 'b only"exp.:
 - Compare them to data: CL_{s+b}[obs] , 1-CL_b[obs]
 - Get expected sensitivities (using q_{median}): $\langle CL_{s+b} \rangle_{b}$, $\langle 1-CL_{b} \rangle_{s+b}$
 - Example, counting experiment (using corresponding LH)

First example

- Technically, one uses -2 lnQ:
 - Technically more convenient (no more exponentials, $\prod \sum$)
 - -2 In LH follows approximately a χ^2 distribution
- Compute -2 InQ prob. density function (pdf) for 's+b"exp., 'b only"exp.:
 - Compare them to data: CL_{s+b}[obs] , 1-CL_b[obs]
 - Get expected sensitivities (using q_{median}): $\langle CL_{s+b} \rangle_{b}$, $\langle 1-CL_{b} \rangle_{s+b}$
- Standard numbers:

What about systematics ?

- Usually, background and signal models not perfectly known. They depend on some uncertain parameters that we do not really care about: nuisance parameters.
- Including systematics in the limit: For each MC experiments, nuisance parameters are randomly moved by $\pm 1 \sigma$ at the generation. -2lnQ is then computed using the mean of nuisance parameters.
- Example:
 - Background level known by theory up to 5 %:

- For each MC exp, generate a new value of μ_{b} according to the law $\mathcal{N}(100,5)$

Profile Likelihoods

- When systematics are large, data can help! One can use the shape of a variable to constraint some nuisance parameters in a region free of signal!
- Include in the likelihood the information from theorists:

$$LH(x_1,..,x_N,\underline{b};\mu_s,\mu_b,f) = e^{-(\mu_s+\mu_b)} \frac{\mu_s+\mu_b^N}{N!} \prod_{i=1}^N f_{s+b}(x_i) \times e^{-\frac{1}{2} \frac{(b-\mu_b)^2}{\sigma_b^2}}$$

usual statistical part

Constraint on µ_b This requires some distribution !

Profile Likelihoods

- When systematics are large, data can help! One can use the shape of a variable to constraint some nuisance parameters in a region free of signal!
- Include in the likelihood the information from theorists:

$$LH(x_1,..,x_N,\underline{b};\mu_s,\mu_b,f) = e^{-(\mu_s + \mu_b)} \frac{\mu_s + \mu_b^N}{N!} \prod_{i=1}^N f_{s+b}(x_i) \times e^{-\frac{1}{2} \frac{(b-\mu_b)^2}{\sigma_b^2}}$$

usual statistical part

Constraint on µ_b This requires some distribution !

• Maximizing LH vs μ_{b} we obtained the

"Profile Likelihood". $LH_{P}(\mu_{s},f) = max_{\mu_{b}} LH(\mu_{s},\mu_{b},f)$

- Use LH_P to construct $Q : Q_P = LH_P(\mu_s, f) / LH_P(0, f)$
- For each MC experiments, LH is maximized (therefore this maximization depends on the hypothesis s or s+b!).

F. Couderc, DAPNIA/SPP

A more sophisticated example

Search a gaussian on top of a flat background

• Compute the expected limit (under bkg only assumption):

A more sophisticated example

• Search a gaussian on top of a flat background

 $\begin{array}{l} \textbf{. Compute the expected limit (under bkg only assumption):} \\ \textbf{Counting experiment} \\ \textbf{AND profiling} & : \mu_{s} < 19 @ 95 \% CL \\ \vdots & \mu_{s} < 19 @ 95 \% CL \\ \textbf{. Limits in g standard LH} & : \mu_{s} < 15 @ 95 \% CL \\ \textbf{Using the shapes in LH} \\ \textbf{AND profiling} & : \mu_{s} < 15 @ 95 \% CL \\ \textbf{Model of the shapes of the s$

A more sophisticated example

• Search a gaussian on top of a flat background

• Compute the expected limit (under bkg only assumption): Counting experiment : $\mu_s < 38 @95 \%$ CL Counting experiment AND profiling : $\mu_s < 38 @95 \%$ CL Using standard LH : $\mu_s < 25 @95 \%$ CL Using the shapes in LH AND profiling : $\mu_s < 19 @95 \%$ CL Background is more constrained by sidebands than by theory. -> It really helps (gain 25%)!

F. Couderc, DAPNIA/SPP

Thoughts about profile Likelihood

- This technique begins to be used (at TeVatron at least). It looks promising though it needs to be used with care:
 - It needs confidence in the bkg shape: constrain signal region from sidebands
 - Bkg shape might be fluctuated according to a systematic (requires an alternate shape and a way to inter(extra)polate them, not so easy!)
 - It needs a prior on the syst distribution (gaussian is not always a good solution: ex theoretical cross sections). Prior is used 2 times: when generating MC exp and when minimizing -2lnQ.
- On the other way, it can constrained some external parameters (efficiencies, bkg cross sections, lumi...)

Should I build a tool myself?

- Several tools exist, all dealing with the 'binned''likelihood case (ie, inputs = binned histograms):
 - Trolke (ROOT built-in): profile LH, but only counting possible
 - mcLimit, TLimit (ROOT built-in) : no profiling. Be careful with expected sensitivity when syst are large
 - mclimit_csm www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html (quite slow)
 - Some other codes used in Dzero: (no web page, you can ask for codes)
- In special cases, it might be easier to built a dedicated tool:
 - Your preferred likelihood might not be the usual poissonian one, unbinned LH, analytic shapes... (RooFit might help for generating MC exp.)
 - Discovery 1-CL_b: very large number of MC experiments needed, difficult in practice, some technique exist: FFT (Fast Fourier Transform), weights implemented in mclimitxx but these weights are biased when large syst.
 - shapes comparisons...
 - Profiling LH, sometimes LH minimization is analytic (cpu time gain)!
- Warning: personal code need special care. Lot of debugging, correct treatment of systematic errors.

F. Couderc, DAPNIA/SPP

A word on CL_s

- Pure frequentist : use $CL_{s+b} < 5 \%$ to exclude @ 95 %CL
- Modified frequentist : Form CL_s = CL_{s+b} / CL_b and use this for exclusion.
 - Limit @ 95 %CL \Leftrightarrow CL_s < 5 % (CL_b < 1 \Rightarrow CL_{s+b} < CL_s)
 - Properties : conservative, not too aggressive when large downward background fluctuation.

By construction: CL_{s+h} < CL_h

Even the extreme vanishing signal case can be excluded in case of low bkg fluctuation (case of all $1-CL_b > 95\%$)

Conclusions

- Described only one approach in this talk. There are other ones Bayesian techniques, Feldman-Cousins...
- Very robust and simple approach, no need for any assumptions: no prior, no need to use the large N limit to get P(Q). Very easy to combine several channels: add LogLH!
- Profile Likelihood techniques, though quite old, are now more and more used. They allow to constrain nuisance parameters (efficiencies, bkg cross sections...) but assumes those bkg shapes are known.

• Further readings

Confidence Level, confidence interval, limits: R. Barlow http://www-group.slac.stanford.edu/sluo/Lectures/Stat2006_Lectures.html CLs : http://www.iop.org/EJ/abstract/0954-3899/28/10/313 mcLimit weighting : http://root.cern.ch/root/doc/TomJunk.pdf mclimit_csm: http://www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html Profile LH : http://lanl.arxiv.org/abs/physics/0403059 FFT : physics/9906010

F. Couderc, DAPNIA/SPP

A word on CLs

• Setting a limit using CL_s is not frequentist. Look at the following false exclusion rates (percentage of time a signal is excluded when it is really in data).

TLimit patch

F. Couderc, DAPNIA/SPP

