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What do we want to know ?

 We observe x, realization of the random variable r:
- Is x due to background only’(hypothesis %) ?

- Is X due to or Signal + background”(hypothesis # ) ?
e Likelihood: LH(#;x) < P(X=x | #). [requires: P(x|#) ]

- Law of likelihood: We have evidence that x supports #, over %
it LH(#4, ;x) > LH(74, ; x). The strength of that evidence is
measured by the ratio Q:

Q = LH(#, s x)/LH(#; ; x)

Q > 1 supports H, over 71,
Q < 1 supports H, over FH,

* Use this ratio Q to answer the questions:

- Are data compatible with background ? To which extent ?
- (If yes) Which signal models are compatible with data ?

- (If yes) Which signal models are not supported by data ?
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FPrograrm

+ We have: a sensitive test Q = LH(#{ , ; x)/LH(#{ ; x) and its
realization in actual data: q_,_

- To quantify the strength of the evidence, whether q_, >1 (signal
like) or q . <1 (background like), we miss two probabilities

- P, (Q>q,.)=1-CL,: probability that an experiment with
background only would fluctuate as high”as in actual data.

- P_.(Q<q,. )=CL_,: probability that an experiment with signal
+background would fluctuate as fow”as in actual data.
* The Frequentist’solution: two sets of MC experiments

- MC experiments following # , = P_,(Q<q)
- MC experiments following # = P, (Q<q)
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Sorne likelinood of interests

Know only the expected number of events (good old days...)
Expect u under hypothesis # N

Observe: N

-u M
pure counting LH(N,U):E HN_!

Know shapes + expected number of events (usual one)

Shape follows the (normalized) continuous distribution with [f =1 (f = pdf of X)

PR ” ) IJ
unbinned LH(X:(Xl,.. ),IJ f i Hl 1f

nbin
‘binned’version  LH(N=(N,,...,N.); u=(pt,..,m;))=]1 "~ e
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rirst example

e Technically, one uses -2 InQ:

- Technically more convenient (no more exponentials, [}, )
- -2 In LH follows approximately a y? distribution

« Compute -2 InQ prob. density function (pdf) for S+b”exp., b only”exp.:
- Compare them to data: CL_, [obs], 1-CL [obs]

- Get expected sensitivities (using g :<CL_,>, , <1-CL>_,

median) s+b™ b ?

b

* Example, counting experiment (using corresponding LH)

pdfs of -2InQ  Obs: 108 -- 11, = 100

0.24 T _ _
002;: Tes = 10 Tes_t 2 sigha mcidel.
0.18F M = 10 L, = 30
O1F s+b MC exp. |s+b MC exp.
0.12E- b only MC exp. |b only MC exp.
0%515 E 0.035—
0.065 E 0.02F-
0.04;— _E 001;_
0.02 = =

O_IIO I | 1|0_ 0* '_

2 Log(Q)
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rirst example

e Technically, one uses -2 InQ:

- Technically more convenient (no more exponentials, [}, )
- -2 In LH follows approximately a y? distribution

« Compute -2 InQ prob. density function (pdf) for S+b”exp., b only”exp.:
- Compare them to data: CL_, [obs], 1-CL [obs]

<C I_s+b>b y < 1-CLb>s+

- Get expected sensitivities (using g

* Standard numbers:
The hypothesis s+b is rejected @ 95 (90)% CL: CL_, <5 (10)%

median): b

Discovery @ 5¢ (Observation @3c0) : 1-CL, <6 107 (2.7 103)

ZOE CL,,[obs] = 4_0 0 W, = 1_0 W = 30 CL,. lobsl=24% =
i/~ Modelp =10  ~ |~ / Modelp =30 * -
o \ ACCEPTABLE REJECTED

e i ’ i 2 Log((l;) 1 * - " ’ * 20_2 L();?Q)




What aoout systematics ?

* Usually, background and signal models not perfectly known. They
depend on some uncertain parameters that we do not really care
about: nuisance parameters.

* Including systematics in the limit: For each MC experiments,
nuisance parameters are randomly moved by = 1 o at the

generation. -2InQ is then computed using the mean of nuisance
parameters.

 Example:

- Background level known by theory up to 5 %:

(b=100+5]
- For each MC exp, generate a new value of y, according to

the law (100,5)
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Profile Likelinoods

* When systematics are large, data can help! One can use the

shape of a variable to constraint some nuisance parameters in
a region free of signal!

* |nclude in the likelihood the information from theorists:

-|_ I,l 1 (b_llb)z
) KT H H -1
usual statistical part Constraint on
This requires some
distribution !
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Profile Likelinoods

* When systematics are large, data can help! One can use the

shape of a variable to constraint some nuisance parameters in
a region free of signal!

* |nclude in the likelihood the mformatlon from theorists:

-|_u 1 (b_lib)z
~(n,+p,) HsTHp H -1
LH le )XN)b)usaub;f) i1 S+b e o
usual statistical part Constraint on p,
This requires some
« Maximizing LH vs p, we obtained the distribution !

“Profile Likelihood” LH_(u_f) = max_p, LH(u_u,,7)
« Use LH, to construct Q : Q, = LH_(u_,f) / LH,(O,f)

* For each MC experiments, LH is maximized (therefore this

maximization depends on the hypothesis s or s+b!).
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A rnore sophisticated exarmple

* Search a gau55|an on top of a flat background

Signal shape

Bkg

shape

7\

2
Discriminante Variable X

16
14
12
10
8
6

% ?%

Discr

iminante

2
Variable X

~ [b=100+5 )

. Compute the expected limit (under bkg only assumption):
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A rnore sophisticated exarmple

. Search a gau55|an on top of a flat background

Signal shape , bIe E
Bkg shape %LQ Case 1:
N / JF “not too large”syst

2 3 - - [ ]
Discriminante Variable X Discriminante Variable X

‘HI\‘HI\‘HI\‘HII‘\HI‘\HI‘\H ‘

_ = — —_

= I\) J:- O\ OO D l\) -b O\
STTTTTT T T Ty

* Compute the expected limit (under bkg only assumption):
Counting experiment :u_< 19 @95 %CL

Counting experiment
AND profiling

Using standard LH 1, < 15 @95 %CL  The shapes help (better is the

resolution, better is the result)

< 19 @95 %CL Profile dqes not improve, can_
S not use sidebands to constrain

Using the shapes in LH
AND profiling
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A rnore sophisticated exarmple

. Search a gau55|an on top of a flat background

Signal shape , bIe E
Bkg shape J( %LQ Case 2:
o / JF “quite large”syst

Discriminante Variable X Discriminante Variable X

‘HI\‘HI\‘HI\‘HII‘\HI‘\HI‘\H ‘

_ = — —_

= I\) J:- O\ OO D l\) -b O\
STTTTTT T T Ty

* Compute the expected limit (under bkg only assumption):

Counting experiment :u_< 38 @95 %CL

Counting experiment ]
AND profiling Lp, <38 @95 %CL

Using standard LH T, <25 @95 %CL

Using the shapes in LH Background is more constrained
ANDgpl‘Ofiling P - Mg < 19 @95 %CL by sidebands than by theory.

-> It really helps (gain 25%)!
F. Couderc, DAPNIA/SPP Setting limits 13



Thoughts about profile Likelinood

* This technique begins to be used (at TeVatron at least). It looks
promising though it needs to be used with care:

- It needs confidence in the bkg shape: constrain signal region
from sidebands

- Bkg shape might be fluctuated according to a systematic
( requires an alternate shape and a way to inter(extra)polate
them, not so easy!)

- It needs a prior on the syst distribution (gaussian is not
always a good solution: ex theoretical cross sections). Prior
is used 2 times: when generating MC exp and when
minimizing -2InQ.

* On the other way, it can constrained some external parameters
(efficiencies, bkg cross sections, lumi...)
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snould | build a tool rmyseli

[

» Several tools exist, all dealing with the binned’likelihood case
(ie, inputs = binned histograms):

Trolke (ROOT built-in): profile LH, but only counting possible

mcLimit, TLimit (ROOT built-in) : no profiling. Be careful with expected sensitivity
when syst are large

mCIimit_Csm www.hep.uiuc.edu/home/tri/cdfstats/mclimit_csm1/index.html (C{Ulte SIOW)

Some other codes used in Dzero: (no web page, you can ask for codes)
special cases, it might be easier to built a dedicated tool:

Your preferred likelihood might not be the usual poissonian one, unbinned LH,
analytic shapes... (RooFit might help for generating MC exp.)

Discovery 1-CL,: very large number of MC experiments needed, difficult in

practice, some technique exist: FFT (Fast Fourier Transform), weights
implemented in mclimitxx but these weights are biased when large syst.

shapes comparisons...
Profiling LH, sometimes LH minimization is analytic (cpu time gain)!

* Warning: personal code need special care. Lot of debugging,

correct treatment of systematic errors.
F. Couderc, DAPNIA/SPP Setting limits
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A word on CL_

» Pure frequentist : use CL_, <5 % to exclude @ 95 %CL

- Modified frequentist : Form CL_=CL_, / CL, and use
this for exclusion.

- Limit @ 95 %CL < CL <5% (CL,<1=CL_, <CL)

- Properties : conservative, not too aggressive when large
downward background fluctuation.

0.45—

By construction: o4t CLaw[obs] =0.6 3 obs E

CLs+b < CLb 0.35;— E

0.3E =

Even the extreme vanishing ~ °%: E

signal case can be excluded = CL.., =

in case of low bkg fluctuation ¢ :

(case of all 1-CL, > 95 %) 0.05 l =
0= —|4 2 0 | 2 | ﬁll
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Conclu

LISIONS

* Described only one approach in this talk. There are ot
Bayesian techniques, Feldman-Cousins...

* Very robust and simple approach, no need for any

ner ones

assumptions: no prior, no need to use the large N limit to get
P(Q). Very easy to combine several channels: add LogLH!

* Profile Likelihood techniques, though quite old, are now more
and more used. They allow to constrain nuisance parameters
(efficiencies, bkg cross sections...) but assumes those bkg

shapes are known.

* Further readings
Confidence Level, confidence interval, limits: R. Barlow

http://www-group.slac.stanford.edu/sluo/Lectures/Stat2006_Lectures.html

ClLs . http://www.iop.org/E J/abstract/0954-3899/28/10/313
mcLimit weighting : http://root.cern.ch/root/doc/TomJunk.pdf

mclimit_csm: http://www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html

Profile LH : http://lanl.arxiv.org/abs/physics/0403059

FFT : physics/9906010
F. Couderc, DAPNIA/SPP Setting limits
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A word on Cls

- Setting a limit using CL_is not frequentist. Look at the following false exclusion rates
(percentage of time a signal is excluded when it is really in data).
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TLirnit patch

1- CL, obs. personnal code
ROOT Tlimit patch CL,,, obs. (kFALSE) (green curve is from TLimit)
CL,., obs. (KTRUE)
CL,,, exp. for b only
:;-e: l_—llll T T 7T T 1T ===l T T ||||__>< 1:1_|||||||||||||||||||||||||||||||||||||||_1:
3 & = = 3
W] 5 —d = 7
e i T i
Ky Nin ™ | I R )
T NG T P
10 X-_—n—-X = 10l J Eﬁ&ﬁ .
E L L L LN | b ) NN 1O O g = My 5
- CL+5% X - CL=5%" | | | X """""""""" y
| cEARER: kot
10 3 \X N 0% H—:
- Still does not work! K ] - A
500k MC exp. i 25k MC exp. i
10~ 11N O T 0O T O W O O O e O O O L O
0 10 20 30 40 50 6 0% 505 20 25 30 35 40 45 50

signal enhancement
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