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What do we want to know ?What do we want to know ?
● We observe x, realization of the random variable X:

–  Is X   due to “background only” (hypothesis Hb) ?

–  Is X   due to or “signal + background” (hypothesis Hs+b) ?

● Likelihood:   LH(H ; x)  P( X=x |  H ).  [ requires: P(X |H) ]

● Law of likelihood: We have evidence that x supports HA over HB 
if LH(HA ; x) > LH(HB ; x). The strength of that evidence is 
measured by the ratio Q: 

                   Q = LH(HA ; x)/LH(HB ; x) 

● Use this ratio Q to answer the questions:
– Are data compatible with background ? To which extent ?
– (If yes) Which signal models are compatible with data ?
– (If yes) Which signal models are not supported by data ?

Q > 1 supports HA over HB

Q < 1 supports HB over HA
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ProgramProgram
● We have: a sensitive test Q = LH(Hs+b ; x)/LH(Hb ; x) and its 

realization in actual data: qobs

● To quantify the strength of the evidence, whether qobs>1 (signal 
like) or qobs<1 (background like), we miss two probabilities :

– Pb    ( Q > qobs ) = 1 - CLb: probability that an experiment with 

background only would fluctuate as “high” as in actual data.

– Ps+b( Q < qobs ) = CLs+b: probability that an experiment with signal

+background would fluctuate as “low” as in actual data.

● The “Frequentist” solution:  two sets of MC experiments

– MC experiments following Hs+b   Ps+b( Q < q )

– MC experiments following Hb     Pb     ( Q < q )



F. Couderc, DAPNIA/SPP Setting limits 4

Some likelihood of interestsSome likelihood of interests
Know only the expected number of events (good old days...)

Expect  under hypothesis H
Observe: N 

LH N=N1 ,... ,N nbin;=1, ... ,2=∏ib=1

nbin
e−ib

ib
N ib

N ib !

Shape follows the (normalized) continuous distribution with f =1 (f = pdf of X)

LH x=x1 , ... , xN  ; , f =e
− 

N

N !
∏i=1

N
f x i

Know shapes + expected number of events (usual one)

“ unbinned”

“ binned” version

pure counting LH N ;=e− 
N

N !
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First exampleFirst example
● Technically, one uses -2 lnQ:

– Technically more convenient (no more exponentials,   )

– -2 ln LH follows approximately a 2 distribution

● Compute -2 lnQ prob. density function (pdf) for “s+b” exp., “b only” exp.:

– Compare them to data:  CLs+b[obs] , 1-CLb[obs]

– Get expected sensitivities (using qmedian): <CLs+b>b , <1-CLb>s+b

● Example, counting experiment (using corresponding LH)

Obs: 108 -- b = 100
Test 2 signa model:

s = 10    s = 30
Test s = 10 Test s = 30

s+b MC exp.
b only MC exp.

s+b MC exp.
b only MC exp.

pdfs of -2 lnQ pdfs of -2 lnQ
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First exampleFirst example
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● Example, counting experiment (using corresponding LH)
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First exampleFirst example

s = 10    s = 30

Model Model  ss = 10 = 10

ACCEPTABLEACCEPTABLE

Model Model  ss = 30 = 30

REJECTEDREJECTED

● Technically, one uses -2 lnQ:
– Technically more convenient (no more exponentials,   )

– -2 ln LH follows approximately a 2 distribution

● Compute -2 lnQ prob. density function (pdf) for “s+b” exp., “b only” exp.:

– Compare them to data:  CLs+b[obs] , 1-CLb[obs]

– Get expected sensitivities (using qmedian): <CLs+b>b , <1-CLb>s+b

● Standard numbers:
– The hypothesis s+b is rejected @ 95 (90)% CL :  CLs+b < 5 (10)%
– Discovery @ 5 (Observation @3) :  1-CLb < 6 10-7 (2.7 10-3)
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What about systematics ?What about systematics ?
● Usually, background and signal models not perfectly known. They 

depend on some uncertain parameters that we do not really care 
about: nuisance parameters.

● Including systematics in the limit: For each MC experiments, 
nuisance parameters are randomly moved by  1  at the 
generation. -2lnQ is then computed using the mean of nuisance 
parameters.

● Example:

– Background level known by theory up to 5 %:

– For each MC exp, generate a  new value of b according to 

the law N(100,5)

b=100±5
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Profile LikelihoodsProfile Likelihoods
● When systematics are large, data can help! One can use the 

shape of a variable to constraint some nuisance parameters in 
a region free of signal!

● Include in the likelihood the information from theorists:

LH x 1 ,.. , xN , b ;s ,b , f =e
−sb 

sb
N

N ! ∏i=1

N
f sbx i

Constraint on b

This requires some 
distribution !

usual statistical part

e
−

1
2

b−b 
2

b
2
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Profile LikelihoodsProfile Likelihoods
● When systematics are large, data can help! One can use the 

shape of a variable to constraint some nuisance parameters in 
a region free of signal!

● Include in the likelihood the information from theorists:

LH x 1 ,.. , xN , b ;s ,b , f =e
−sb 

sb
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f sbx i
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This requires some 
distribution !

usual statistical part

e
−

1
2

b−b 
2

b
2

● Maximizing LH vs b we obtained the

 “ Profile Likelihood”:  LHP(s,f) = max_b LH(s,b,f) 

● Use LHP to construct Q : QP = LHP(s,f) / LHP(0,f)

● For each MC experiments, LH is maximized (therefore this 
maximization depends on the hypothesis s or s+b!).
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A more sophisticated exampleA more sophisticated example
● Search a gaussian on top of a flat background

● Compute the expected limit (under bkg only assumption):

b=100±5

Signal shape
Bkg     shape

Possible
dataset
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A more sophisticated exampleA more sophisticated example
● Search a gaussian on top of a flat background

● Compute the expected limit (under bkg only assumption):

b=100±5

Counting experiment   : s < 19 @95 %CL

Using standard LH       : s < 15 @95 %CL

Using the shapes in LH
AND profiling                

Counting experiment
AND profiling               

Profile does not improve, can 
not use sidebands to constrain

The shapes help (better is the 
resolution, better is the result)

Profiling does not help

Signal shape
Bkg     shape Case 1: 

“ not too large” syst

: s < 19 @95 %CL

: s < 15 @95 %CL

Possible
dataset
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A more sophisticated exampleA more sophisticated example
● Search a gaussian on top of a flat background

● Compute the expected limit (under bkg only assumption):

b=100±20

Counting experiment   : s < 38 @95 %CL

Using standard LH       : s < 25 @95 %CL

Using the shapes in LH
AND profiling               

Counting experiment
AND profiling               

Background is more constrained 
by sidebands than by theory.
  -> It really helps (gain 25%)!

Signal shape
Bkg     shape Case 2: 

“ quite large” syst

: s < 38 @95 %CL

 : s < 19 @95 %CL

Possible
dataset
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Thoughts about profile LikelihoodThoughts about profile Likelihood
● This technique begins to be used (at TeVatron at least). It looks 

promising though it needs to be used with care:

– It needs confidence in the bkg shape: constrain signal region 
from sidebands

– Bkg shape might be fluctuated according to a systematic 
( requires an alternate shape and a way to inter(extra)polate 
them, not so easy! )

– It needs a prior on the syst distribution (gaussian is not 
always a good solution: ex theoretical cross sections). Prior 
is used 2 times: when generating MC exp and when 
minimizing -2lnQ.

● On the other way, it can constrained some external parameters 
(efficiencies, bkg cross sections, lumi...)
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Should I build a tool myself ?Should I build a tool myself ?
● Several tools exist, all dealing with the “binned” likelihood case  

(ie, inputs = binned histograms):
– Trolke (ROOT built-in): profile LH, but only counting possible

– mcLimit, TLimit (ROOT built-in) : no profiling. Be careful with expected sensitivity 
when syst are large 

– mclimit_csm www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html (quite slow)

– Some other codes used in Dzero: (no web page, you can ask for codes)

● In special cases, it might be easier to built a dedicated tool:
– Your preferred likelihood might not be the usual poissonian one, unbinned LH, 

analytic shapes... (RooFit might help for generating MC exp.)

– Discovery 1-CLb: very large number of MC experiments needed, difficult in 
practice, some technique exist: FFT (Fast Fourier Transform), weights 
implemented in mclimitxx but these weights are biased when large syst.

– shapes comparisons...

– Profiling LH, sometimes LH minimization is analytic (cpu time gain)!

● Warning:  personal code need special care. Lot of debugging, 
correct treatment of systematic errors.

http://www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html
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A word on CLA word on CLss

By construction:
CLs+b < CLb

Even the extreme vanishing 
signal case can be excluded 
in case of low bkg fluctuation 
(case of all 1-CLb > 95 %)

CLs+b

● Pure frequentist : use CLs+b < 5 % to exclude @ 95 %CL

● Modified frequentist : Form CLs = CLs+b / CLb  and use 
this for exclusion.

– Limit @ 95 %CL  CLs < 5 % (CLb < 1  CLs+b < CLs)

– Properties : conservative, not too aggressive when large 
downward background fluctuation.

obs
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ConclusionsConclusions
● Described only one approach in this talk. There are other ones 

Bayesian techniques, Feldman-Cousins...

● Very robust and simple approach, no need for any 
assumptions: no prior, no need to use the large N limit to get 
P(Q). Very easy to combine several channels: add LogLH!

● Profile Likelihood techniques, though quite old, are now more 
and more used. They allow to constrain nuisance parameters 
(efficiencies, bkg cross sections...) but assumes those bkg 
shapes are known.

● Further readings
Confidence Level, confidence interval, limits: R. Barlow

http://www-group.slac.stanford.edu/sluo/Lectures/Stat2006_Lectures.html
CLs           : http://www.iop.org/EJ/abstract/0954-3899/28/10/313
mcLimit weighting : http://root.cern.ch/root/doc/TomJunk.pdf
mclimit_csm: http://www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html
Profile LH  : http://lanl.arxiv.org/abs/physics/0403059
FFT           : physics/9906010
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A word on CLsA word on CLs
● Setting a limit using CLs is not frequentist. Look at the following false exclusion rates 

(percentage of time a signal is excluded when it is really in data).

T. Junk hep-ex/9902006
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TLimit patchTLimit patch
1- CLb obs.

CLs+b obs. (kFALSE)

CLs+b obs. (kTRUE)

CLs+b exp. for b only

CL = 5 %

ROOT Tlimit patch 
personnal code 

(green curve is from TLimit)

CL = 5 %

25k MC exp.500k MC exp.

Still does not work!


