Theoretical framework 00000	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

SuperIso and new constraints from B physics

Farvah Nazila Mahmoudi

Uppsala University, SWEDEN

Brussels - 14 November 2007

Farvah Nazila Mahmoudi

Uppsala University, SWEDEN

(日) (日) (日) (日)

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Outline

Introduction

Theoretical framework

Effective Hamiltonian Isospin Asymmetry Supersymmetric contributions

SuperIso v1.0

Experimental limits and data

New constraints from Isospin Asymmetry

Conclusion

Introduction •	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

- $b \longrightarrow s\gamma$ transitions: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishlingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

・ロト ・回ト ・ヨト

Introduction •	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

- $b \longrightarrow s\gamma$ transitions: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishlingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

・ロト ・日下・ ・ ヨト

Introduction •	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

- $b \longrightarrow s\gamma$ transitions: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishlingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

< ロ > < 回 > < 回 > < 回 >

Introduction •	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

- $b \longrightarrow s\gamma$ transitions: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishlingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code SuperIso

	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion O
Effective Hamiltoni	an				

Effective Hamiltonian

The idea of $B \longrightarrow X_s \gamma$ decay begins with introducing an effective Hamiltonian:

$$\mathcal{H}_{eff} = -rac{4G_F}{\sqrt{2}}V_{ts}^*V_{tb}\sum_{i=1}^8C_i(\mu)O_i(\mu)$$

$$O_{1} = (\bar{s}_{L}\gamma_{\mu}T^{a}c_{L})(\bar{c}_{L}\gamma^{\mu}T^{a}b_{L}) \qquad O_{2} = (\bar{s}_{L}\gamma_{\mu}c_{L})(\bar{c}_{L}\gamma^{\mu}b_{L})$$

$$O_{3} = (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q) \qquad O_{4} = (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q)$$

$$O_{5} = (\bar{s}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}b_{L})\sum_{q}(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}q)$$

$$O_{6} = (\bar{s}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}T^{a}q)$$

$$O_{7} = \frac{e}{16\pi^{2}}m_{b}(\bar{s}_{L}\sigma^{\mu\nu}b_{R})F_{\mu\nu} \qquad O_{8} = \frac{g}{16\pi^{2}}m_{b}(\bar{s}_{L}\sigma^{\mu\nu}T^{a}b_{R})G_{\mu\nu}^{a}$$

Farvah Nazila Mahmoudi

æ

	Theoretical framework	SuperIso	Experimental limits and data		Conclusion			
	00000							
Effective Hamiltonian								

Wilson Coefficients

$$C_i^{eff}(\mu) = C_i^{(0)eff}(\mu) + \frac{\alpha_s(\mu)}{4\pi}C_i^{(1)eff}(\mu) + \cdots$$

The effective coefficients evolve according to their RGE:

$$\mu \frac{d}{d\mu} C_i^{\text{eff}}(\mu) = C_j^{\text{eff}}(\mu) \gamma_{ji}^{\text{eff}}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{eff}(\mu)$:

$$\hat{\gamma}^{\text{eff}}(\mu) = \frac{\alpha_s(\mu)}{4\pi} \hat{\gamma}^{(0)\text{eff}} + \frac{\alpha_s^2(\mu)}{(4\pi)^2} \hat{\gamma}^{(1)\text{eff}} + \cdots$$

Farvah Nazila Mahmoudi

Uppsala University, SWEDEN

イロト イヨト イヨト

	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0
Isospin Asymmetry	,				

Isospin Asymmetry

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$
$$\Delta_{0-} = \operatorname{Re}(b_d - b_u).$$
$$b_q = \frac{12\pi^2 f_B Q_q}{m_b T_1^{B \to K^*} a_7^c} \left(\frac{f_{K^*}^{\perp}}{m_b} K_1 + \frac{f_{K^*} m_{K^*}}{6\lambda_B m_B} K_2\right)$$
$$= C_7 + \frac{\alpha_s(\mu)C_F}{4\pi} \left(C_1(\mu)G_1(s_p) + C_8(\mu)G_8\right) + \frac{\alpha_s(\mu_h)C_F}{4\pi} \left(C_1(\mu_h)H_1(s_p) + C_8(\mu_h)H_8\right)$$

In the Standard Model: $\Delta_{0-}\simeq 8\%$

Kagan and Neubert, Phys. Lett. B 539, 227 (2002) Bosch and Buchalla, Nucl. Phys. B 621, 459 (2002)

Farvah Nazila Mahmoudi

a₇c

Uppsala University, SWEDEN

	Theoretical framework ○○○●○	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0
Isospin Asymmetry					

Contribution to Isospin Asymmetry

b $O_3 O_6$ S γ \overline{q} \overline{q}

QCD penguin operators

< 🗇 🕨

Farvah Nazila Mahmoudi

	Theoretical framework ○○○○●	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0
Supersymmetric co	ntributions				

Supersymmetric contributions MSSM with minimal flavor violation (MFV) ↔ no more flavor/CP violation than in SM

Calculation of the coefficients at $\mu = M_W$:

$$C_{i}(\mu) = C_{i}^{W^{\pm}}(\mu) + C_{i}^{H^{\pm}}(\mu) + C_{i}^{\chi^{\pm}}(\mu)$$

Gómez et al. Phys. Rev. D74, 015015 (2006) Degrassi et al. JHEP 12, 009 (2000) Ciuchini et al. Nucl. Phys. B 534, 3 (1998) Ciuchini et al. Nucl. Phys. B 527, 21 (1998)

Farvah Nazila Mahmoudi

Uppsala University, SWEDEN

Theoretical framework	SuperIso ●00	Experimental limits and data	Results 00	Conclusion 0

A public C–program for calculating isospin asymmetry of $B\to K^*\gamma$ in supersymmetry.

- calculation of isospin asymmetry and inclusive branching ratio,
- automatic calculation in mSUGRA, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

< □ > < □

Theoretical framework	SuperIso ●00	Experimental limits and data	Results 00	Conclusion 0

A public C–program for calculating isospin asymmetry of $B\to K^*\gamma$ in supersymmetry.

- calculation of isospin asymmetry and inclusive branching ratio,
- automatic calculation in mSUGRA, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

A (1) > A (1) > A

Theoretical framework	SuperIso ●00	Experimental limits and data	Results 00	Conclusion 0

A public C–program for calculating isospin asymmetry of $B\to K^*\gamma$ in supersymmetry.

calculation of isospin asymmetry and inclusive branching ratio,

- automatic calculation in mSUGRA, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

Theoretical framework	SuperIso ●00	Experimental limits and data	Results 00	Conclusion 0

A public C–program for calculating isospin asymmetry of $B\to K^*\gamma$ in supersymmetry.

- calculation of isospin asymmetry and inclusive branching ratio,
- automatic calculation in mSUGRA, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

・ロト ・回ト ・ヨト

Theoretical framework	SuperIso ●00	Experimental limits and data	Results 00	Conclusion 0

A public C–program for calculating isospin asymmetry of $B\to K^*\gamma$ in supersymmetry.

calculation of isospin asymmetry and inclusive branching ratio,

Image: A match a ma

- automatic calculation in mSUGRA, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

SuperIso

Theoretical framework	SuperIso ○○●	Experimental limits and data	Results 00	Conclusion 0

```
Can be downloaded from:
http://www3.tsl.uu.se/~nazila/superiso/
```

Manual:

F. Mahmoudi, arXiv:0710.2067 to appear in Comp. Phys. Comm.

For more information:

Ahmady & Mahmoudi, Phys. Rev. D75 (2007) F. Mahmoudi, arXiv:0710.4501, submitted to JHEP

< ロ > < 回 > < 回 > < 回 >

Theoretical framework	SuperIso 000	Experimental limits and data •0000000	Results 00	Conclusion 0

Experimental data

BABAR

$$\Delta_{0-} = -0.006 \pm 0.058(\textit{stat}) \pm 0.009(\textit{syst}) \pm 0.024(\textit{R}^{+/0})$$

Aubert et al. (BABAR Collaboration) Phys. Rev. D72 (2005)

$\frac{\text{BELLE}}{\Delta_{0+}} = +0.012 \pm 0.044(\text{stat}) \pm 0.026(\text{syst})$

Nakao et al. (BELLE Collaboration) Phys. Rev. D69 (2004)

Allowed Region: $-0.018 < \Delta_{0-} < 0.093$

イロト イヨト イヨト イ

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data 0●000000	Results 00	Conclusion 0

Experimental limits

Lower bounds on sparticle masses in GeV:

Particle	h ⁰	χ_1^0	Ĩ _R	$\tilde{\nu}_{e,\mu}$	χ_1^{\pm}	\tilde{t}_1	ĝ	\tilde{b}_1	$\tilde{\tau}_1$	<i>q̃</i> _R
Lower bound	111	46	88	43.7	67.7	92.6	195	89	81.9	250

Yao et al. J. Phys. G33 (2006)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - 釣�?

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Results: mSUGRA

Ahmady & Mahmoudi, Phys. Rev. D75 (2007)

Farvah Nazila Mahmoudi

SuperIso and new constraints from B physics

Uppsala University, SWEDEN

2

A B > 4
 B > 4
 B

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Results: mSUGRA

• • • • • • • •

э

Ahmady & Mahmoudi, Phys. Rev. D75 (2007)

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

A B > 4
 B > 4
 B

2

Results: mSUGRA

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Results: mSUGRA

・ロト ・ 日 ト ・ ヨ ト

э

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

A B > 4
 B > 4
 B

2

Results: mSUGRA

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Results: mSUGRA

• • • • • • • •

2

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Results: NUHM

F. Mahmoudi, arXiv:0710.4501

SuperIso and new constraints from B physics

Э

2

・ロト ・日子・ ・ ヨト

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion 0

Results: NUHM

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

Jppsala University, SWEDEN

2

A B > 4
 B > 4
 B

Theoretical framework	SuperIso 000	Experimental limits and data 000000●0	Results 00	Conclusion 0

Results: AMSB

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

SuperIso and new constraints from B physics

Uppsala University, SWEDEN

Э

2

A B > 4
 B > 4
 B

2

Theoretical framework	SuperIso 000	Experimental limits and data 000000●0	Results 00	Conclusion 0

Results: AMSB

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

Uppsala University, SWEDEN

2

A B > 4
 B > 4
 B

Theoretical framework	SuperIso 000	Experimental limits and data 0000000●	Results 00	Conclusion 0

Results: GMSB

F. Mahmoudi, arXiv:0710.4501

2

A B > 4
 B > 4
 B

Theoretical framework	SuperIso 000	Experimental limits and data	Results ●0	Conclusion 0

Results

$$\mathcal{B}(B_s
ightarrow \mu^+ \mu^-) < 0.93 imes 10^{-7}$$

Farvah Nazila Mahmoudi

Uppsala University, SWEDEN

Э

2

A B > 4
 B > 4
 B

Theoretical framework	SuperIso 000	Experimental limits and data	Results 0●	Conclusion 0

Results:

mSUGRA

F. Mahmoudi, arXiv:0710.4501

SuperIso and new constraints from B physics

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Uppsala University, SWEDEN

Theoretical framework	SuperIso 000	Experimental limits and data	Results 0●	Conclusion O

Results:

mSUGRA

AMSB

A B > 4
 B > 4
 B

2

F. Mahmoudi, arXiv:0710.4501

Farvah Nazila Mahmoudi

SuperIso and new constraints from B physics

Uppsala University, SWEDEN

2

	Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion •
Constant	t				

- We can obtain new constraints (new contours) using the Isospin asymmetry
- Very tight constraints on the studied parameter spaces, complementary or even more restrictive than the inclusive branching ratio
- Can be applied to other scenarios
- Isospin asymmetry seems to be an important observable in the precision test of the SM and in constraining new physics parameters

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion •

- We can obtain new constraints (new contours) using the Isospin asymmetry
- Very tight constraints on the studied parameter spaces, complementary or even more restrictive than the inclusive branching ratio
- Can be applied to other scenarios
- Isospin asymmetry seems to be an important observable in the precision test of the SM and in constraining new physics parameters

▲ □ > < □ >

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion •

- We can obtain new constraints (new contours) using the Isospin asymmetry
- Very tight constraints on the studied parameter spaces, complementary or even more restrictive than the inclusive branching ratio
- Can be applied to other scenarios
- Isospin asymmetry seems to be an important observable in the precision test of the SM and in constraining new physics parameters

Theoretical framework	SuperIso 000	Experimental limits and data	Results 00	Conclusion •

- We can obtain new constraints (new contours) using the Isospin asymmetry
- Very tight constraints on the studied parameter spaces, complementary or even more restrictive than the inclusive branching ratio
- Can be applied to other scenarios
- Isospin asymmetry seems to be an important observable in the precision test of the SM and in constraining new physics parameters