

 $B \to X_s \gamma$: SM and Beyond

Ulrich Haisch University of Mainz (THEP)

XLIIIrd Rencontres de Moriond, Electroweak Session, La Thuile, March 1–8, 2008

Motivation

• As $\Delta BR_{SUSY} \sim (0.1 \text{ TeV/}\widetilde{m})^2 BR_{SM}$ and squark masses of at least a few hundred GeV are plausible, SUSY corrections to BR of only a few percent are likely, which calls for precise SM calculations of $b \rightarrow s\gamma$

Effective Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QED} \times \text{QCD}} + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^8 C_i(\mu) Q_i + \dots$$

$$Q_{1,2} = (\bar{s}\Gamma_i c) (\bar{c}\Gamma_i' b)$$

$$|C_{1,2}(m_b)| \sim 1$$

$$Q_{3-6} = (\bar{s}\Gamma_i b) \sum_q (\bar{q}\Gamma_i' q)$$

$$|C_{3-6}(m_b)| < 0.07$$

$$Q_7 = rac{e m_b}{16\pi^2} \left(ar{s}_L \sigma^{\mu
u} b_R \right) F_{\mu
u}$$

$$Q_8 = rac{g m_b}{16 \pi^2} \left(ar{s}_L \sigma^{\mu
u} T^a b_R
ight) G^a_{\mu
u}$$

$$C_7(m_b) \sim -0.3$$

$$C_8(m_b) \sim -0.15$$

Effective Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QED} \times \text{QCD}} + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^8 C_i(\mu) Q_i + \dots$$

$$\begin{array}{c|c}
 & Q_2 \\
\hline
 & c \\
\hline
 & c \\
\hline
 & g \\
 & g \\
\hline
 & g \\
\hline
 & g \\
 & g \\$$

$$Q_{1,2} = (\bar{s}\Gamma_i c) (\bar{c}\Gamma_i' b)$$

$$|C_{1,2}(m_b)| \sim 1$$

$$Q_{3-6} = (\bar{s}\Gamma_i b) \sum_q (\bar{q}\Gamma_i' q)$$

$$|C_{3-6}(m_b)| < 0.07$$

$$\begin{array}{c|c}
b & Q_7 & s \\
\hline
\searrow \gamma
\end{array}$$

$$Q_7 = \frac{em_b}{16\pi^2} \left(\bar{s}_L \sigma^{\mu\nu} b_R\right) F_{\mu\nu}$$

$$Q_8 = rac{g m_b}{16\pi^2} \left(ar{s}_L \sigma^{\mu
u} T^a b_R \right) G^a_{\mu
u}$$

$$C_7(m_b) \sim -0.3$$

$$C_8(m_b) \sim -0.15$$

General Structure

$$BR(B \to X_s \gamma)_{SM}^{E_{\gamma} > 1.6 \text{ GeV}} = BR(B \to X_c e \bar{\nu})_{exp} \left[\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})} \right]_{LO}$$

$$\times \left\{ 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha) + \mathcal{O}(\alpha_s^2) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) + \mathcal{O}\left(\alpha_s \frac{\Lambda}{m_b}\right) \right\}$$

$$= \text{NLO QCD} \qquad \text{LO QCD + NLO } m_b$$

$$= \text{NLO QCD} \qquad \text{NLO QCD + NLO } m_c$$

$$= \text{NNLO QCD} \qquad \text{NLO QCD + LO } m_b$$

relative size compared to LO

Role of Charm Quark

- Changing pole scheme value $m_c/m_b = 0.29(2)$ to $\overline{\text{MS}}$ value 0.22(4) leads to a shift of SM BR of more than 10% at NLO level
- Charm quark mass dependence of $BR(B \to X_s \gamma)$ so pronounced because charm quark mass first enters through $b \to s \gamma$ matrix elements of $Q_{1,2}$ at NLO level

 Natural scale at which charm quark mass should be normalized can thus only be determined by a dedicated calculation of charm quark mass dependence of BR at NNLO

Flavor of NNLO Calculation

Bobeth, Misiak & Urban '00; Misiak & Steinhauser '04

Bieri, Greub & Steinhauser '03; Blokland et al. '05; Melnikov & Mitov '05; Asatrian et al. '05, '06; Misiak & Steinhauser '06

Gorbahn & UH '04; Gorbahn, UH & Misiak '05; Czakon, UH & Misiak '06

- Matching at high scale $\sim M_W$: three- for $C_{7,8}$ and two-loop for C_{1-6}
- Running between M_W and m_b : four- for $b \to s\gamma(g)$ while three-loop in remaining cases

all Wilson coefficients $C_{1-8}(m_b)$ known at NNLO

Flavor of NNLO Calculation

Bobeth, Misiak & Urban '00; Misiak & Steinhauser '04

Bieri, Greub & Steinhauser '03; Blokland et al. '05; Melnikov & Mitov '05; Asatrian et al. '05, '06; Misiak & Steinhauser '06

Gorbahn & UH '04; Gorbahn, UH & Misiak '05; Czakon, UH & Misiak '06

• Matrix elements at low scale $\sim m_b$: complete for (Q_7, Q_7) , virtual large- β_0 corrections for $Q_{1,2,7,8}$ and asymptotic form of all matrix elements in heavy charm quark mass limit $m_c \ll m_b/2$

interpolation to $m_c \sim 0.25 m_b$ assuming that large- β_0 part describes full result well for $m_c = 0$

First NNLO Estimate

$${\rm BR}(B \to X_s \gamma)_{\rm SM}^{E_\gamma > 1.6~{
m GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

individual errors on BR

Further Progress

Czakon, UH & Misiak '06

Lee, Neubert & Paz '06

Asatrian et al. '06; Czarnecki & Pak, unpublished

Boughezal, Czakon & Schutzmeier '07

Ligeti et al. '99; Ferroglia, Gambino & UH, unpublished

- α_s^2 anomalous dimensions Q_{1-6} into Q_8 : -0.3%
- m_c effects due to gluon lines of (Q_7, Q_7) : +0.3%
- $m_{c,b}$ effects due to gluon lines of $(Q_{1,2}, Q_7)$: +1.1%
- dominant large- β_0 bremsstrahlungs effects: +2.0%
- $\alpha_s \Lambda/m_b$ non-perturbative effects of (Q_7, Q_8) : -1.5%

total correction to BR: +1.6%

Ongoing Efforts

Boughezal, Czakon & Schutzmeier, in progress

Lee, Neubert & Paz, in progress

- Calculation of α_s^2 corrections to $(Q_{1,2}, Q_7)$ for $m_c = 0$ and of virtual α_s^2 corrections of $Q_{1,2}$ matrix elements for $m_c \sim 0.25 m_b$ with aim of significantly reducing or even removing theory uncertainty due to interpolation in charm quark mass
- Dedicated analysis of $\alpha_s \Lambda/m_b$ non-local power-corrections emerging from $(Q_{1,2}, Q_7)$ and (Q_8, Q_8) terms may allow to set rough bound on size of non-perturbative effects, superseding current uncertainty guess-estimate of 5%

Two Universal Extra Dimensions

• All SM fields propagate in two flat extra dimensions, compactified on a square with side length $L=\pi R$ and adjacent sides being identified. This compactification leads to chiral fermion zero modes, while the higher fermionic KK modes are vector-like as usual

• Since geometry is invariant under rotations by π about the center of square, the model respects an additional Z_2 symmetry. This implies that the lightest KK-odd particle is stable and could provide a viable dark matter candidate for a small KK scale $1/R \lesssim 600 \text{ GeV}$

Bound on Compactification Scale

- Inclusion of virtual one-loop KK contributions and quadratic divergent mass corrections to KK scalar masses leads to strong suppression of BR in UED6 compared to SM prediction
- Although cut-off sensitivity weakens constraint on compactification scale, $B \rightarrow X_s \gamma$ leads to strongest direct bound of 1/R > 650 GeV at 95% CL in variance with dark matter limit

Anomalous Wtb Couplings

$$\frac{q \uparrow \overset{>}{\underset{b}{\stackrel{\vee}{\underset{}}}} W_{\mu}^{a}}{=} -\frac{ig_{W}}{\sqrt{2}} \left[\gamma_{\mu} (v_{L}P_{L} + v_{R}P_{R}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{M_{W}} (g_{L}P_{L} + g_{R}P_{R}) \right]$$

95% CL bound	δv_L	v_R	g_L	g_R	$\operatorname{Re} C_7^{(p)}$	$\operatorname{Re} C_8^{(p)}$
upper	0.03	0.0025	0.0004	0.57	0.04	0.15
lower	-0.13	-0.0007	-0.0015	-0.15	-0.14	-0.56

- ATLAS measurements should allow to put stronger bound of few 10^{-2} on g_R , while expected bounds on v_R and g_L are weaker than $B \to X_s \gamma$ limits by more than order of magnitude due to chiral m_t/m_b enhancement in $b \to s \gamma$
- Single top production measurement at Tevatron imply $\delta v_L = 0.3 \pm 0.2$. Around order of magnitude better bounds are expected at LHC which would overcome current $B \rightarrow X_s \gamma$ constraint on BSM contribution to v_L

Conclusions

Model	Accuracy	Effect	Bound	
THDM II	NLO	1	$M_{H^\pm} > 295 { m GeV} (95\% { m CL})$	
MFV MSSM	NLO	\$		
LR	NLO	\$		
general MSSM	LO	\$	$ (\delta_{23}^d)_{LL} \lesssim 4 \times 10^{-1}, \ (\delta_{23}^d)_{RR} \lesssim 8 \times 10^{-1}, $ $ (\delta_{23}^d)_{LR} \lesssim 6 \times 10^{-2}, \ (\delta_{23}^d)_{RL} \lesssim 2 \times 10^{-2}$	
UED5	LO		1/R > 600 GeV (95% CL)	
UED6	LO		1/R > 650 GeV (95% CL)	
RS I	LO	\uparrow	$M_{ m KK}\gtrsim 2.4{ m TeV}$	
LH	LO	1		
LHT	LO	1		

- Inclusion of NNLO corrections has lead to significant reduction of renormalization scale and scheme dependences of BR(B → X_sγ)_{SM} that have been main source of theoretical uncertainty at NLO level
- As new SM prediction is lower than measurements by around 1σ, BSM contributions should be preferably constructive, while NP that leads to suppression of BR(B → X_sγ) is more severely constrained than in past