





Decays at Belle

Antonio Limosani

**Research Fellow** 

University of Melbourne



XLIII Recontres de Moriond **ELECTROWEAK INTERACTIONS &** UNIFIED THEORIES

Moriond, La Thuile, March 1-8 2008

**Tony Limosani - University of Melbourne** 



# Motivation



Inclusive Radiative B-meson decays are a sensitive probe for physics beyond the standard model.





Motivation





New physics may enter as new particles in the loop e.g heavier supersymmetric particles

# $2^{3} - 4^{3} - 5^{5}$ BF(B $\rightarrow$ X<sub>s</sub> $\gamma$ ) (10<sup>-4</sup>) scaled for E<sub> $\gamma$ </sub> > 1.6 GeV



[9.1 fb<sup>-1</sup>]

[81.5 fb<sup>-1</sup>]

[81.5 fb<sup>-1</sup>]

[210 fb<sup>-1</sup>]

 $[5.8 \text{ fb}^{-1}]$ 

[140 fb<sup>-1</sup>]

CLEO

BaBar

BaBar

new

Belle

PRL87,251807(2001)

PRD72,052004(2005)

PRL98,022002(2007)

BaBar PRD-RC

PLB511,151(2001)

HFAG 2006 hep-ex/0603003

Belle PRL93,061803(2004)

#### PLB511,151(2001) Belle [140 fb<sup>-1</sup>] PRL93,061803(2004) HFAG 2006 hep-ex/0603003 NLO - 2001

3



5

CLEO

BaBar

BaBar

new

Belle

PRL87,251807(2001)

PRD72,052004(2005)

PRL98,022002(2007)

BaBar PRD-RC

[9.1 fb<sup>-1</sup>]

[81.5 fb<sup>-1</sup>]

[81.5 fb<sup>-1</sup>]

[210 fb<sup>-</sup>]

 $[5.8 \text{ fb}^{-1}]$ 

2

 $\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{X}_{s}\gamma)$  (10<sup>-4</sup>) scaled for  $\mathbf{E}_{y} > 1.6$  GeV

### HFAG 2006 hep-ex/0603003 NNLO - 2007

2



Branching Fraction  $B \to X_s \gamma$ 

 $BF(B \rightarrow X_{s\gamma})$  (10<sup>-4</sup>) scaled for  $E_{\gamma} > 1.6$  GeV

5

# Branching Fraction $B o X_s \gamma$





# Branching Fraction $B \to X_s \gamma$



# Branching Fraction $B \to X_s \gamma$



#### IMPERATIVE FOR EXPERIMENTS TO REDUCE UNCERTAINTY!

# Branching Fraction $B \to X_s \gamma$





## Unitarity Triangle







## CMSSM phase space





Ratio of BF(B ->  $X_{sY}$ ) (Measurement/SM prediction) Red : 1.127 +- 0.12 Brown : 1.127 +- 0.36

See talk by Frederic Ronga " Prediction for the Lightest Higgs Boson Mass in the Framework of CMSSM" Les Rencontres de Physique de la Vallée d'Aoste 2008

tanβ

Collaboration of interested theorists and experimentalists

Buchmüller, Oliver (CERN) - Exp. De Roeck, Albert (CERN & Uni. Antwerpen) - Exp. Heinemeyer, Sven (Santander) - Theo. Olive, Keith (Uni. of Minnesota) - Theo. Ronga, Frédéric (CERN) - Exp. Weiglein, Georg (Durham) - Theo.

Cavanaugh, Richard (Uni. of Florida) - Exp. Ellis, John (CERN) - Theo. Isidori, Gino (INFN Frascati) - Theo. Paradisi, Paride (Uni. of Valencia) - Theo. Weber, Arne (Max Planck Inst. (Munich)) - Theo.

Moriond, La Thuile, March 1-8 2008



## Inclusive Analysis



- Find isolated clusters in the ECL
  - High energy  $E^* > 1.4 \text{ GeV}$
  - Veto  $\gamma$  from π, η & Bhabha
  - Use topological info to suppress continuum background
- Background is still very big!
  - Estimate continuum using OFF resonance data
  - Estimate B decays using "corrected" MC sample



Moriond, La Thuile, March 1-8 2008

**Tony Limosani - University of Melbourne** 





### $N^{B\bar{B}}(E_{\gamma}^{*\mathrm{ON}}) = N^{\mathrm{ON}}(E_{\gamma}^{*\mathrm{ON}}) - c\alpha N^{\mathrm{OFF}}(F_{E}(E_{\gamma}^{*\mathrm{OFF}}))$





**Response to Selection** 



 $N^{BB}(E_{\gamma}^{*\mathrm{ON}}) = N^{\mathrm{ON}}(E_{\gamma}^{*\mathrm{ON}}) - \mathcal{O}N^{\mathrm{OFF}}(F_{E}(E_{\gamma}^{*\mathrm{OFF}}))$ 

Efficiency of the selection criteria



Moriond, La Thuile, March 1-8 2008

**Tony Limosani - University of Melbourne** 













## Scaled Continuum







### Photons from B-decays





#### FRACTION

| Signal             | 0.190 |
|--------------------|-------|
| Decays of $\pi^0$  | 0.474 |
| Decays of $\eta$   | 0.163 |
| Decays of others   | 0.081 |
| Mis-IDed electrons | 0.061 |
| Mis-IDed hadrons   | 0.017 |
| Beam bkgd          | 0.013 |



## PiO and Eta from B-decays



 Measure major backgrounds in data and MC independently and correct our analysis sample MC





## Efficiency corrections



Get selection efficiency in MC and data in control samples e.g  $\pi^0$  Veto efficiency in partially reconstructed  $D^* \to D \to K\pi\pi^0$ ,  $\pi^0 \to \gamma(\gamma)$ 



All selection criteria are investigated in a similar fashion



## Spectrum (605/fb of data)





Did we properly subtract continuum and beam background?

Yield above endpoint for gamma from B-decay is consistent with zero



## Spectrum (605/fb of data)





Did we properly estimate the the background from B-decays?

Yield where we expect very little signal is consistent with zero.



## Spectrum (605/fb of data)





Before revealing the signal region, we first performed the analysis on the 140/fb sample (the same as used for our previous measurement) and found agreement with our published result.



# Photon Energy Spectrum





Peaks at half the mass of of the b-quark

Significant signal between 1.7< E(GeV) < 1.8





### Results





Moriond, La Thuile, March 1-8 2008

**Tony Limosani - University of Melbourne** 

Slide 28



### First at E(cut)=1.7 GeV



|         | hary |
|---------|------|
| prelini |      |

| Y(4S) | rest | frame |
|-------|------|-------|
| Y(4S) | rest | frame |

| E(cut) | PBF                      |
|--------|--------------------------|
| [GeV]  | [10^-4]                  |
| 1.70   | $3.32 \pm 0.16 \pm 0.37$ |
| 1.80   | $3.25 \pm 0.15 \pm 0.24$ |
| 1.90   | $3.13 \pm 0.14 \pm 0.16$ |
| 2.00   | $2.95 \pm 0.13 \pm 0.12$ |
| 2.10   | $2.68 \pm 0.12 \pm 0.10$ |

| Mean                        |
|-----------------------------|
| [GeV]                       |
| $2.291 \pm 0.027 \pm 0.053$ |
| $2.302 \pm 0.022 \pm 0.028$ |
| $2.318 \pm 0.018 \pm 0.014$ |
| $2.340 \pm 0.014 \pm 0.007$ |
| $2.370 \pm 0.011 \pm 0.005$ |

| Variance                       |
|--------------------------------|
| $[GeV^2]$                      |
| $0.0467 \pm 0.0130 \pm 0.0214$ |
| $0.0417 \pm 0.0085 \pm 0.0081$ |
| $0.0355 \pm 0.0053 \pm 0.0027$ |
| $0.0290 \pm 0.0031 \pm 0.0009$ |
| $0.0225 \pm 0.0017 \pm 0.0006$ |

Preliminary

#### B-meson rest frame

(additional uncertainty due to models needed to calculate correction from Y(4S) to B frame)

| E(cut) | PBF                               | Mean                                  | Variance                                  |
|--------|-----------------------------------|---------------------------------------|-------------------------------------------|
| [GeV]  | [10-4]                            | [GeV]                                 | $[GeV^2]$                                 |
| 1.70   | $3.31 \pm 0.16 \pm 0.37 \pm 0.01$ | $2.281 \pm 0.027 \pm 0.053 \pm 0.002$ | $0.0396 \pm 0.0130 \pm 0.0214 \pm 0.0012$ |
| 1.80   | $3.24 \pm 0.15 \pm 0.24 \pm 0.01$ | $2.290 \pm 0.022 \pm 0.028 \pm 0.002$ | $0.0350 \pm 0.0085 \pm 0.0081 \pm 0.0005$ |
| 1.90   | $3.12 \pm 0.14 \pm 0.16 \pm 0.02$ | $2.305 \pm 0.018 \pm 0.014 \pm 0.004$ | $0.0292 \pm 0.0053 \pm 0.0027 \pm 0.0008$ |
| 2.00   | $2.94 \pm 0.13 \pm 0.12 \pm 0.02$ | $2.326 \pm 0.014 \pm 0.007 \pm 0.005$ | $0.0227 \pm 0.0031 \pm 0.0009 \pm 0.0009$ |
| 2.10   | $2.62 \pm 0.12 \pm 0.10 \pm 0.05$ | $2.350 \pm 0.011 \pm 0.005 \pm 0.006$ | $0.0170 \pm 0.0017 \pm 0.0006 \pm 0.0012$ |



## Systematics



| E(cut)<br>[GeV]<br>1.70<br>1.80<br>1.80                                | PBF<br>[10 <sup>-4</sup> ]<br>3.31 +- 0.16 +- 0.37<br>3.24 +- 0.15 +- 0.24<br>3.38 +- 0.31 +- 0.30                                                                   | Analysis<br>(Belle 605/f<br>(Belle 605/f<br>(Belle 140/f                     | fb)<br>fb)<br>fb)                                                            | Relative<br>Error<br>(12.2%)<br>(8.7%)<br>(12.5%) |            |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|------------|
| Syst                                                                   | tematic                                                                                                                                                              | PBF[10 <sup>-4</sup> ]<br>1.7 GeV                                            | 1.8 (                                                                        | GeV                                               | · · · or Y |
| Con<br>Sele<br>pi0/<br>othe<br>Bea<br>Ene<br>Unf<br>Sigr<br>Pho<br>b-> | atinuum Background<br>ection Criteria<br>deta background<br>er B - background<br>m background<br>ergy resolution<br>folding<br>nal model<br>ton detection<br>d gamma | 0.17<br>0.20<br>0.06<br>0.24<br>0.02<br>0.01<br>0.01<br>0.03<br>0.05<br>0.01 | 0.12<br>0.15<br>0.05<br>0.13<br>0.02<br>0.01<br>0.01<br>0.02<br>0.03<br>0.01 | Pr                                                | elim       |
| B-m<br><br>Tota                                                        | neson boost<br>                                                                                                                                                      | 0.01                                                                         | 0.01<br>0.24                                                                 |                                                   |            |

Moriond, La Thuile, March 1-8 2008



### Extrapolation to $E_{Y} > 1.6$ GeV

CLEO

BaBar

new

Belle

PRL87,251807(2001)

PRL98,022002(2007)

BaBar PRD-RC

PLB511,151(2001)

HFAG 2006

hep-ex/0603003



FROM - Phys.Rev. D73 (2006) 073008 **Buchmuller & Flacher** 

Eur.Phys.J.C7:5-27,1999 -Kagan & Neubert (KN)

Nucl.Phys.B699:335-386,2004 -Bosch, Lange, Neubert & Paz

Nucl.Instrum.Meth.A462:152-155,2001 -Lange, Neubert & Paz (BLNP)

Phys.Lett.B612:13-20,2005 Neubert

Nucl.Phys.B710:371-401,2005 Benson, Bigi & Uraltsev (BBU)





Moriond, La Thuile, March 1-8 2008

**Tony Limosani - University of Melbourne** 



## Conclusions



• The measurements of the branching fractions and moments are the most precise to date

 $\mathcal{B}(B \to X_s \gamma)|_{E\gamma > 1.7 \,\text{GeV}} = (3.31 \pm 0.16 \pm 0.37 \pm 0.01) \times 10^{-4}$ stat sys boost

- Tighter constraints on new Physics
- Will reduce uncertainty on mb thus improve our knowledge of a side of the Unitarity Triangle
- Inclusive measurements can only be done well at an e<sup>+</sup>e<sup>-</sup> machine.



## Backup slides







DXth International Conference on



Melbourne, Australia June 5-9, 2008

#### Topics:

- Rare Decays
- CP Violation
- CKM and Form Factors
- Lepton Flavor Violation
- Heavy Quarks
- Neutrinos
- Top and Tau Physics

#### http://hql08.ph.unimelb.edu.au/

#### International Advisory Committee

THE UNIVERSITY OF MELBOURNE

The University of Melbourne: E Elisabetta Barberio, A Geoffrey Taylor, B Raymond Volkas, S Nicole Bell, S Atonio Limosani, K The University of Sydney: G Kevin Varvell. J

Local Organising

Committee

Eisabetta Barberio (Melb, Chair), Angel López (Univ. of Puerto Rico), Brad Cox (Univ. of Virginia), Stephan Paul (TU Munchen), Stefano Biano (INTN - frascati), Konrad Kleinknecht (Univ. of Mainz), Joel Butler (Fermilab), Hitoshi Yamamoto (Tohoku Univ.), Adam Para (Fermilab), Franco Grancagnolo (Univ. del Salento & INFN - Lecce)



### **KEKB** and Belle







Moriond, La Thuile, March 1-8 2008



## Selection Criteria



| $\gamma$ polar angle                            | $\cos \theta$                    | ∈      | [-0.35, 0.70]   |
|-------------------------------------------------|----------------------------------|--------|-----------------|
| $\pi^0$ probability                             | $\mathcal{P}_{\pi^0}$            | $\leq$ | 0.10            |
| $\eta$ probability                              | $\mathcal{P}_{\eta}$             | $\leq$ | 0.20            |
| Distance to closest charged                     | $d_T$                            | $\geq$ | $3\mathrm{cm}$  |
| Distance to closest charged with $P>1{\rm GeV}$ | $d_{HT}$                         | $\geq$ | $50\mathrm{cm}$ |
| Distance to closest $\gamma$                    | $d_{\gamma}$                     | $\geq$ | $30\mathrm{cm}$ |
| Angle to closest $e$                            | $\alpha_e$                       | $\geq$ | 0.3             |
| Angle to closest $\mu$                          | $\alpha_{\mu}$                   | $\geq$ | 0.3             |
| $\gamma E_9/E_{25}$                             | $\mathrm{E}_{9}/\mathrm{E}_{25}$ | $\geq$ | 0.95            |
| Second Fox Wolfram moment                       | $R_2$                            | $\leq$ | 0.5             |
| Angle between $\gamma$ and EM cluster $(-\pi)$  | Θ                                | €      | [0, 0.2]        |
| OFF time cut (Exp $\geq 39$ )                   | s_tdc                            | €      | [9000, 11000]   |
|                                                 |                                  | OR     |                 |
|                                                 | mcsi_bb                          | €      | [7500, 9300]    |

| MAIN stream                             |                     |        |                 |  |
|-----------------------------------------|---------------------|--------|-----------------|--|
| Virtual calorimeter central energy      | $E_C$               | $\geq$ | $3.0~{\rm GeV}$ |  |
| Virtual calorimeter Fisher discriminant | $F_{VC}$            | $\leq$ | $2.0~{ m GeV}$  |  |
| Event shapes Fisher Discriminant        | $F_{ES}^{\rm MAIN}$ | $\leq$ | -0.28           |  |



## Signal Models



#### KN

Eur.Phys.J.C7:5-27,1999 - Kagan & Neubert (KN)

#### **BLNP**

Nucl.Instrum.Meth.A462:152-155,2001 -Lange, Neubert & Paz

#### BBU

Nucl.Phys.B710:371-401,2005 Benson, Bigi & Uraltsev

#### DGE JHEP01(2007)029 Andersen & Gardi

### GG Gambino & Giordano - work in progress