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Introduction

♠ An analytic quantitative approach to strongly coupled gauge theories is
one of the holy grails of modern theoretical physics.

The reasons are:

♠ QCD a very successful theory for the strong interactions is such a strongly
coupled gauge theory.

♠ New strongly-coupled gauge theories are one of the expected ingredients
at the TeV scale. They may appear in various forms:

• Technicolor-like theories or little Higgs versions.

• Warped higher dimensions theories in the Randall-Sundrum family that are qualitatively
similar and in many cases dual to strongly-coupled 4d gauge theories.

• Hidden sector (or “hidden valley”) theories, that are necessary for supersymmetry break-
ing, or omnipresent and generically required for the consistency of string theory SM-like
vacua.

Remarkably, we do not have analytical control over most of the energy
regime. Even numerically (lattice), many aspects of the theory are still
beyond reach
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♠ Despite, analytical weak coupling tools,numerical (lattice) calculations,
and (semi)-phenomenological approaches (chiral perturbation theory, tradi-
tional large-N techniques, resummations, bag models, Lund and fragmen-
tation models etc) we cannot reliably calculate in QCD several observables
of interest:

• Glueball spectra for higher glueballs, mesons and baryons. Decay widths for essentially
all particles.

• There are at least two weak matrix elements that cannot be computed so far reliably
enough by lattice computations: The ∆I = 1

2
matrix elements of type 〈K|O∆I=1/2,3/2|ππ〉

, and the BK ∼ 〈K|O∆S=2|K̄〉.
• Data associated to the chiral symmetry breaking (like the quark condensate), or its
restauration at higher temperatures.

• In general matrix elements with at least two particle final states.

• Real time finite temperature correlation functions (associated to QGP dynamics) and
badly needed for comparison with current data from RHIC and future data from ALICE

• Finite temperature physics at finite baryon density (potentially relevant for astrophysical
purposes).
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AdS/CFT and holography

♠ ’t Hooft had indicated in 1974 that pure SU(Nc) YM theory has an extra
“parameter”: Nc. In the limit

Nc →∞ , λ ≡ g2
Y MNc → fixed

the perturbative series in 1
Nc

resembles that of a string theory (with string

coupling constant ∼ 1
Nc

) and as dominant diagrams the “planar ones” (cor-

responding to “classical” string diagrams).

♠ Assuming confinement, the observable fields are finite mass color sin-
glets (glueballs, mesons) with negligible interactions. Baryons are a more
complicated though.

• This has spurned the quest for a low-energy weakly-coupled string de-
scription of hadron physics.

♠ The surprise in this quest emergent in 1997 when it was realized in
a different 4d gauge theory (a strongly-coupled conformal theory with 4
supersymmetries) that, the relevant string theory lives in 10 rather than in
the expected 4 dimensions.

Maldacena
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The spacetime (string) background geometry is that of AdS5 × S5

AdS5 → ds2 =
`2AdS

r2
(dr2 + ηµνdxµdxν) , R = − 6

`2AdS

• The extra coordinate r is the “holo-
graphic coordinate”. There is Poincaré
invariance in the 4d coordinates xµ.

• The space is non-compact with a bound-
ary at r=0 (isomorphic to Minkowski space).

• The holographic coordinate can be in-
terpreted as a RG scale M .

• The boundary at r = 0 corresponds to the UV (M = ∞) of the gauge
theory. r = ∞ is the IR (M = 0).

• There is a 1-1 correspondence between UV divergences in the gauge
theory and IR divergences (near the AdS boundary) of the gravity (string)
theory. Both theories need “renormalization” as usual.
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The correspondence

gauge theory ↔ string theory

• To every gauge-invariant gauge theory operator ↔ a particle (on-shell)
state of the string theory.

• Matching parameters:

g2
Y M = 4πgs , λ ≡ g2

Y MNc =
`4AdS

`4string

• As Nc →∞, λ → fixed, gs ∼ λ
Nc
→ 0 string loops are suppressed.

• If λ >> 1, the `AdS >> `string the geometry is weakly curved →
effectively `s → 0 → the string is “stiff” →
we can approximate it with its zero modes (and drop the oscillation modes).
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The effective theory

The generic string “zero modes” are:

• The graviton gµν → Tµν ∼ Tr[F 2
µν − 1

4
ηµνF 2]

• The dilaton scalar φ → Tr[F 2]

• The RR (pseudoscalar) axion a → Tr[F ∧ F ]

with effective string theory action

Sstring ∼ M3
P

∫
d5x

√
g

[
e−2φ

(
R− 4

3
(∂φ)2 + · · ·

)
+ (∂a)2 + · · ·

]

λ ∼ Nc eφ , θ ∼ a

• The (Lorentz invariant in 4d) classical solution for gµν, φ, a etc corresponds to the
“vacuum” of the gauge theory.

• Fluctuations around the vacuum solution represent the color-singlet propagating particles
(glueballs here) of the gauge theory. This is an eigenvalue (Schrondinger-like) problem
that gives a discrete spectrum of masses (and a mass gap) in confining gauge theories.

• Fluctuations of gµν gives a tower of bound states with spin 2 (2++ glueballs). The

dilaton gives the tower of 0++ glueballs. The axion gives the tower of 0+− glueballs, etc.
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The thermal gauge theory

• Putting the gauge theory at finite temperature T amounts to compacti-
fying Euclidean time to a circle of radius β = 1

T

• In the dual string theory, we must consider solutions that near the AdS
boundary look like S1

β ×R3

Unlike the T = 0 case now the ”vacuum solution” is not unique. There are two generic

kinds:

♠ The “thermal vacuum solution”. This is the same as the vacuum solution
but with the Euclidean time circle compactified with radius β.

ds2TV = e2A(r)
[
dr2 + dt2 + d~x · d~x

]

In confining theories it describes the low-T confining phase.

♠ The “black hole solution”

ds2BH = e2A(r)
[

dr2

f(r)
+ f(r) dt2 + d~x · d~x

]

In confining theories it describes the high-T deconfined phase (Quark-
Gluon-Plasma phase).
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The deconfining transition and QGP

• Both the TV and BH solutions are large-Nc saddle points (semiclassical
minima)

• Which one dominates and is the true vacuum can be decided by comparing
their free energies:

FTV = N2
c S(gTV ) , FBH = N2

c S(gBH)

• The two are equal at T = Tc. Below Tc, the true vacuum is the Thermal
Vacuum (confinement). Above Tc it is the BH that dominates (QGP phase)

• The entropy of the gauge theory is O(1) in the confined phase and O(N2
c )

in the QGP phase. It coincides with the Bekenstein-Hawking entropy of
the BH

• The low-energy dynamics of strongly coupled gauge theory QG plasma
is described by the gravitational fluid dynamics of the black hole.

• Black holes have universal low-energy features that translate into a uni-
versality of the non-abelian plasmas.
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Can we control the gauge theory?

• String duals of gauge theories involve RR backgrounds, and so far we do

not know how to solve the associated string theories.

• If the string background is weakly curved, then we can solve the theory

in the “zero mode” (classical gravity) approximation.

• There are several strongly-coupled gauge theories which are weakly curved.

They are all 10d. We can engineer pure YM in the IR, but we cannot sep-

arate other (higher d) dynamics so far.

• QCD and several other gauge theories (a) live in 5d only (b) in the UV

they are weakly coupled (asymptotic freedom). Therefore the dual string

is “soft” (and the gravity approximation breaks down).

• To study them holographic (semi)-phenomenological models are used.
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AdS/QCD

♠ The crudest model: use a slice of AdS5, with a UV cutoff, and an IR cutoff.
Polchinski+Strassler, also Randall-Sundrum I

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with U(Nf)L × U(Nf)R, gauge fields and a bifundamental scalar, T ,
to describe mesons.

Erlich+Katz+Son+Stepanov, DaRold+Pomarol

♠ Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks partly ”reasonable”.

♠ Shortcomings:

• The glueball spectrum does not fit very well the lattice calculations.In particular it
has the wrong behavior m2

n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.
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Improved Holographic QCD

• The effective action

Sstring = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

with a dilaton potential V (λ).

• Find a classical solution: λ(r) and ds2 = e2A(r)(dr2 + dxµdxµ)

• In the UV λ(r) → 0 (asymptotic freedom) and the metric becomes AdS5.

• There is a 1-1 correspondence between the QCD β-function, β(λ) and
the dilaton potential V (λ)

• In the IR, λ →∞ and

V (λ) '
√

logλ λ
4
3 + · · · , β(λ) ' −3

2
λ

[
1 +

3

8

1

logλ
+O

(
1

log2 λ

)]

for confinement and asymptotically-linear Regge trajectories
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Dependence of mass ratios on λ0
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Linearity of the glueball spectrum
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(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data: Ref I
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Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05 (boxes), with the lattice QCD data

from Ref. I (crosses) and the AdS/QCD computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs.

The masses are in MeV, and the scale is normalized to match the lowest 0++ state from Ref. I.

`2eff = 6.88 `2AdS
and “predict”

αs(1.2GeV ) = 0.34,

which is within the error of the quoted experimental value α(exp)
s (1.2GeV ) = 0.35± 0.01
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The fit to Ref I

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ [?] Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.
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The transition in the free energy
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Equation of state
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The speed of sound (bulk viscosity)
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The specific heat
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Many open ends

• This approach towards an improved holographic QCD model is preliminary

but seems promising

• Several immediate directions:

♠ Calculate the meson spectrum and compare with data.

♠ Explore the baryon spectrum

♠ Diagonalize the η′ − 0+− system and compare with data.

♠ Recalculate the dipole moment of the neutron in connection with the

strong CP problem.

♠ Calculate RHIC/LHC finite T observables (like jet quenching)

♠ Analyze different strongly coupled theories in particular N=1 super YM.
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A preview of the results: pure glue

♠ The starting point of pure QCD: a two-derivative action in 5d involving

gµν ↔ Tµν , φ ↔ Tr[F2] , a ↔ Tr[F ∧ F ]

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
− Z(λ)

2N2
c

(∂a)2 + V (λ)

]
, λ = Nc eφ

with

V (λ) = V0


1 +

∞∑

n=1

Vnλn


 = −4

3
λ2

(
dW

dλ

)2
+

64

27
W2.

• There is a 1-1 correspondence between the QCD β-function, β(λ) and
W :

β(λ) = −9

4
λ2 d logW (λ)

dλ

• There is a similar statement between Z(λ) and the (non-perturbative)
β-function for the θ-angle.

Holography and strong coupling, E. Kiritsis

23



• The space is asymptotically AdS5 in the UV (r → 0) modulo log correc-

tions (in the Einstein frame):

ds2 = e2A(r)(dr2 + ηµνdxµdxµ) , E ≡ eA(r)

• There are various extra α′ corrections to the potential (∼ β-function).They

only correct the non-universal terms. Moreover, α′ corrections to the en-

ergy definition E can be set to zero in a special scheme (the ”holographic”

scheme).

• ALL confining backgrounds have an IR singularity at r = r0. There are

two classes: r0=finite and r0 = ∞. The singularity is always ”good”: all

spectra are well defined without extra input.

• λ →∞ at the IR singularity.

• In the r0 = ∞ class of backgrounds, the curvature (in the string frame)

vanishes in the neighborhood of the IR singularity.
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Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at
finite r = r0.

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞
The scale factor eA vanishes there exponentially in the r coordinate.

• For all potentials that confine, the spectrum of 0++ and 2++ glueballs
has a mass gap and is purely discrete. For the 0+− glueballs this is the
case if

Z(λ) ∼ λd , d > 2 as λ →∞.

We will later derive that d = 4.
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• In all physically interesting confining backgrounds the magnetic color

charges are screened. This is an improvement with respect to AdS/QCD

models (magnetic quarks are also confined instead) .

• Of all the possible confining asymptotics, there is a unique one that

guarantees “linear confinement” (m2
n ∼ n) for all glueballs. It corresponds

to the case Q = 2/3, P = 1/2, i.e.

W (λ) ∼ (logλ)
1
4 λ

2
3 , β(λ) = −3

2
λ

[
1 +

3

8 logλ
+ · · ·

]
, λ ∼ E−

3
2

(
log

1

E

)3
8

This choice also seems to be preferred from considerations of the meson

sector as discussed below.

• Numerical calculation of the 0++ and 2++ glueball spectra and compar-

ison with lattice data gives a clear preference for the r0 = ∞ asymptotics.

Holography and strong coupling, E. Kiritsis

26



.

• We can find the background solution for the axion:

a(r) = (θUV + 2πk)
∫ r0

r

dr

e3AZ(λ)

/ ∫ r0

0

dr

e3AZ(λ)

written in terms of the axion coupling function Z(λ) and the scale factor

eA. This provides the “running” of the effective QCD θ angle.

• A direct holographic calculation of the θ-dependent vacuum energy gives

E(θUV ) ∼ Mink(θUV + 2πk)2

.

• Note that always a(E = 0) = 0. This suggests that the θ angle is screened

in the IR.
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Preview: quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the

Tachyon field. It breaks the chiral (gauge) symmetry. The normalizable

mode corresponds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,
breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly
plays an important role in this (holographic Coleman-Witten)
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.
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Motivating the effective action

• Spectrum in 5d: NSNS (gµν, Bµν, φ) and RR (C0 ↔ C3, C1 ↔ C2 and C4).

• The basic string motivated action for the 5d theory is

S5 = M3
∫

d5x
√

g

[
e−2φ

(
R + 4(∂φ)2 +

δc

`2s

)
− 1

2 · 5!
F2
5 −

1

2
(da)2

]

F5 = dC4 seeds the D3 branes that generate the U(Nc) group.

• The C4 equation of motion gives ∗F5 = Nc and the dual action in the

Einstein frame gE = e
4
3φ gs

SE = M3
∫

d5x
√

g

[
R− 4

3
(∂φ)2 − e2φ

2
(∂a)2 + Vs(φ)

]
, Vs(φ) =

e
4
3φ

`2s

[
δc− N2

c

2
e2φ

]

• Higher derivative corrections involving the F5 upon dualization provide
further terms in the dilaton potential

Vs(φ) =
e
4
3φ

`2s


δc +

∞∑

n=1

an (Nce
φ)2n


 MORE INFO
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♠ This potential is very good for the IR behavior but in the UV it vanishes
with λ and this is not the correct behavior.

♠ We need a potential that in the Einstein frame asymptotes to a constant
V0 = 12

`2
as λ → 0.

♠ This is generated by higher-derivative corrections in the curvature. Here

we postulate it.

♠ The five form will then generate a series of (perturbative) terms in λ:

V (λ) = V0


1 +

∞∑

n=1

anλa n




we will take a = 1 for simplicity (by adjusting the kinetic term).

♠ This matches the weak coupling expansion of perturbative QCD and will

give the perturbative β-function expansion.

♠ We will ignore other effects of higher-derivative terms associated with R

and (∂Φ)2. Motivated partly by the success of SVZ sum rules
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♠ The “resumed” two-derivative action reads

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

after redefining the kinetic terms.

• We must choose the holographic energy: the natural choice is E = eAE frame as it is
monotonic and end at zero in the IR singularity.

• We may now solve the equations perturbatively in λ around λ = 0 and r = 0 (this is a
weak coupling expansion) to find

dλ

d logE
≡ β(λ) = −b0λ

2 + b1λ
3 + b2λ

4 + · · ·
with

1

λ
= L− b1

b0
logL +O

(
logL

L

)
, L ≡ −b0 log(rΛ)

e2A =
`2

r2

[
1 +

8

32 log rΛ
+ · · ·

]

V =
12

`2

[
1 +

8

9
(b0λ) +

23− 36b1

b2
0

34
(b0λ)2 + · · ·

]

♠ One-to-one correspondence with the perturbative β-function, and the perturbative po-

tential.
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for A) One

corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR

behavior is unacceptable. The other is Λ. The third one is a gauge artifact (corresponds

to overall translation in the radial coordinate).
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition than
was considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)

Holography and strong coupling, E. Kiritsis
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General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16

Holography and strong coupling, E. Kiritsis
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is

singular in the Einstein frame, the string frame geometry is asymptotically

flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.

Holography and strong coupling, E. Kiritsis

37



• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,

Holography and strong coupling, E. Kiritsis

38



The axion background

• The kinetic term of the axion is suppressed by 1/N2
c . (it is an angle in

the gauge theory, it is RR in string theory)

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

It can be interpreted as the flow equation of the effective θ-angle.
• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
r
e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• The vacuum energy is

E(θUV ) =
M3

2N2
c

∫
d5x

√
gZ(λ)(∂a)2 =

M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) = −M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

,
a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)

Holography and strong coupling, E. Kiritsis
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(a) An example of the axion profile (normalized to one in the UV) as a function of
energy, in one of the explicit cases we treat numerically. The energy scale is in MeV,
and it is normalized to match the mass of the lowest scalar glueball from lattice data,
m0 = 1475MeV . The axion kinetic function is taken as Z(λ) = Za(1+caλ4), with ca = 100
(the masses do not depend on the value of Za). The vertical dashed line corresponds to

Λp ≡ 1
`

exp
[
A(λ0)− 1

b0λ0

]
(b0λ0)

b1/b2
0

. In this particular case Λ = 290MeV .

(b)A detail showing the different axion profiles for different values of ca. The values are

ca = 0.1 (dashed line), ca = 10 (dotted line) and ca = 100 (solid line).

Holography and strong coupling, E. Kiritsis
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QCD at finite temperature

The thermal vacuum can be described by
(1) The “thermal vacuum solution”. This is the zero temperature solution we desribed
so far with time periodically identified with period β.

(2) The “black-hole solution”

ds2 = b(r)2

[
dr2

f(r)
− f(r)dt2 + dxidxi

]
, Φ = Φ(r)

We can show the following:

• For T > Tmin there are two black-hole solutions with the same temperature but different
horizon positions. One is a “large” BH the other is “small”.

5 10 15 20 25 30
rh

0.5

1

1.5

2

2.5

T

0.5 1 1.5 2 2.5 3
Λh

250

300

350

400

450

500

550

T
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• When T < Tmin only the “thermal vacuum solution” exists: it describes

the confined phase at finite temperature.

• When T > Tmin three competing solutions exist. The large BH has the

lowest free energy. It describes the deconfined QGP phase.

• The minimum temperature for the black-holes is Tmin ' 210 MeV with

λh = 0.34. The critical temperature is

Tc ' 240 MeV , λh = 0.54

• The specific heat for the QGP solution is positive as it should:

dE

dT
=

E

T + 3
4π

∂ log b
∂rh

• In the QGP phase, the qq̄ potential is screened. This is better than lattice

results.

Holography and strong coupling, E. Kiritsis
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Critical string theory holography

♠ Several “successful” holographic models of non-trivial gauge dynamics

• The non-supersymmetric D4 solution,due to Witten, dual to N = 45

sYM on a circle, whose supersymmetry is broken by the boundary con-

ditions of the fermions. It exhibits confinement in the IR.

• Flavor has been successfully incorporated by Sakai+Sugimoto by adding

D7 (dipole) branes.

• The Chamseddine-Volkov solution interpreted by Maldacena and Nuñes

as the dual of a confining compactified gauge theory (emerging by

wrapping NS5 branes on a two-cycle).

• The Klebanov-Strassler solution corresponding to a cascade of quiver

gauge theories, that confine in the IR.

43



.

♠ In all of the above, confinement related quantities (string tension, glue-

ball, masses etc, finite temperature effects) can be calculated analytically.

♠ The same applies to the Sakai-Sugimoto model for flavor, except two

major drawbacks:

The absence of bare quark masses and the chiral-symmetry-breaking condensate.

♠ In all the above solutions, the scale of KK excitations is of the same

order as Λ of the confining gauge theory.

♠ None so far has managed to overcome this obstacle in critical string

theory models.

Holography and strong coupling, E. Kiritsis
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Non-Critical holography

♠ Non-critical string theories have been explored in order to avoid the KK

problem.
Kuperstein+Sonnenschein, Klebanov+Maldacena, Bigazzi+Casero+Cotrone+Kiritsis+Paredes

♠ They are expected to involve large curvatures (due to the δc term) and

the supergravity approximation seems problematic.

♠ They may provide reliable information on some quantities despite the

strong curvature (cf. WZW CFTs).

♠ Recent progress in solving exactly for probe D-branes in non-critical

backgrounds has provided important insights for non-critical holography.
Fotopoulos+Niarchos+Prezas, Ashok+Murthy+Troost

♠ It is fair to say that non-critical holography is so far largely unexplored.

Holography and strong coupling, E. Kiritsis
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Fluctuations around the AdS5 extremum

0.2 0.4 0.6 0.8 1
Λ

-0.4

-0.2

0.2

0.4

0.6

0.8

V

• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that
of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV
of QCD as dimensions do not match.

Holography and strong coupling, E. Kiritsis
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Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is most probably relevant for the Banks-Zaks
fixed points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating gY M2 to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.

Holography and strong coupling, E. Kiritsis
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Holographic meson dynamics: the models

• Flavor is obtained by adding Nf << NC D+D̄ pairs

• There are several working models of flavor:

♠ Non-supersymmetric backgrounds with abelian D7flavor brane.
Babington+Erdmenger+Evans+Guralnic+Kirsch

Kruczenski+Mateos+Myers+Winters

♠ Non-supersymmetric D4+ D8 + D̄8
Sakai+Sugimoto

♠ Hard-wall AdS/QCD plus a scalar, plus U(Nf)L × U(Nf)R vectors
Erlich+Katz+son+Stephanov, DaRold+Pomarol

Holography and strong coupling, E. Kiritsis
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.

Holography and strong coupling, E. Kiritsis
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.

Holography and strong coupling, E. Kiritsis
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Calculating hadron Spectra

• A fluctuation equation (linearized) of a given string theory looks like :

d2ξ

dr2
+ 2

dB(r)

dr

dξ

dr
+ ¤4ξ = 0 , ¤4 ≡

∂2

∂xµ∂xµ

It is solved by separation of variables

, ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• The equation for the radial wavefunction ξ(r) can be mapped to an
effective Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• This is an eigenvalue problem with a discrete spectrum of masses (and a mass gap) in
confining gauge theories.

• The mass gap and discrete spectrum are visible from the asymptotics of the effective
Schrodinger potential. Large n asymptotics of masses obtained from WKB

• Fluctuations of gµν gives a tower of bound states with spin 2 (2++ glueballs). The

dilaton gives the tower of 0++ glueballs. The axion gives the tower of 0+− glueballs, etc.

Holography and strong coupling, E. Kiritsis
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The concrete model

• Use a smooth interpolation between the one and two loop perturbative

QCD β-function and the IR asymptotics.

β(λ) = − 3b0λ2

3 + 2b0λ
− 6(2b20 + 3b21)λ

3

(1 + λ2)
(
18 +

(
2b20 + 3b21

)
log(1 + λ2)

)

5 10 15 20 25
r

0.05

0.1

0.15

0.2

0.25

0.3

eA

2.5 5 7.5 10 12.5 15
r

2

4

6

8

Λ

The scale factor and ’t Hooft coupling that follow from β. b0 = 4.2, λ0 = 0.05, A0 = 0.

The units are such that ` = 0.5. The dashed line represents the scale factor for pure AdS.
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The wave-functions of low-lying glueballs

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line),0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Estimating the importance of logarithmic scaling

We keep the IR asymptotics of background II,but change the UV to power asymptoting
AdS5, with a small λ∗.

eA(r) =
`

r
e−(r/R)2

, Φ(r) = Φ0 +
3

2

r2

R2

√
1 + 3

R2

r2
+

9

4
log

2 r
R

+ 2
√

r2

R2 + 3
2√

6
.

Wconf = W0

(
9 + 4b20(λ− λ∗)2)1/3

) (
9a + (2b20 + 3b1) log

[
1 + (λ− λ2

∗)
])2a/3

.

We fix parameters so that the physical QCD scale is the same (as determined from

asymptotic slope of Regge trajectories.
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n
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The stars correspond to the asymptotically free background I with b0 = 4.2 and λ0 = 0.05; the squares

correspond the results obtained in the first background with R = 11.4`; the triangles denote the spectrum in

the second background with b0 = 4.2, li = 0.071 and l∗ = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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Dependence of absolute mass scale on λ0
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Dependence on initial condition λ0 of the absolute scale of the lowest lying

glueball (shown in Logarithmic scale)
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The glueball wavefunctions
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Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Pseudoscalar glueballs
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Lowest 0−+ glueball mass in MeV as a function of ca in Z(λ) = Za(1+caλ4).
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.

Holography and strong coupling, E. Kiritsis
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α-dependence of scalar spectrum
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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Non-supersymmetric backgrounds with abelian flavor branes

• D7 brane in deformed AdS5.

• Only abelian axial symmetry U(1)A realized geometrically as an isometry.

• A quark mass can be introduced, and a quark condensate can be calcu-

lated.

• U(1)A is spontaneously broken du to the embedding.

• Correct GOR relation

• Qualitatively correct η′ mass.

• No non-abelian flavor symmetry (due to N=2 Yukawas)

Holography and strong coupling, E. Kiritsis
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The Sakai-Sugimoto model

• D4 on non-susy S1 plus D8 branes.

• The flavor symmetry is realized on world-volume

• Full U(Nf)L × U(Nf)R symmetry broken to U(Nf)V .

• Chiral symmetry breaking as brane-antibrane recombination.

• Quark constituent mass

• Qualitatively correct η′ mass

• No quark mass parameter, nor chiral condensate.

Holography and strong coupling, E. Kiritsis
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AdS/QCD

• Crude model: AdS5 with a UV and IR cutoff.

• Addition of U(Nf)L × U(Nf)R vectors and a (Nf , N̄f) scalar T.

• Chiral symmetry broken by hand via IR boundary conditions.

• Vector meson dominance and GOR relation incorporated.

• Chiral condensate not determined.

• Gluon sector problematic.

Holography and strong coupling, E. Kiritsis
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The meson sector (Nf << Nc)

• Flavor is introduced via the introduction of Nf pairs of space filling D4+D̄4

branes.

• The crucial world volume fields are the tachyon Tij in (Nf , N̄f) and the

U(Nf)L × U(Nf)R vectors.

• The D-WZW sector depends nontrivial on T and realizes properly the

P and C symmetries. It generates the appropriate gauge and global flavor

anomalies.

• We can introduce explicitly mass matrices for the quarks, and we can

dynamically determine the chiral condensate.

Holography and strong coupling, E. Kiritsis
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Comparison of scalar and tensor potential
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Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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.

• We have naturally the χSB breaking order parameter T , and consistency

with anomalies implies that it is non-zero and proportional to the identity

(Holographic Coleman+Witten theorem).

• The pions appear as Goldstone bosons when mq = 0.

• The correct GOR relation is obtained.

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• There is linear confinement (M2
n ∼ n) associated with the vanishing of

the tachyon potential at T →∞.

• We obtain the correct Stuckelberg coupling mixing with 0+− and and

mass for the η′.

Holography and strong coupling, E. Kiritsis
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Comparison with lattice data: Ref II
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Comparison of glueball spectra from our model with b0 = 2.55, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. II.
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Confining background II:r0 =finite

• We choose a regular β-function with appropriate asymptotics:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3η(2b20 + 3b21)λ

3

9η + 2
(
2b20 + 3b21

)
λ2

, η ≡
√

1 + δ−1 − 1

• Confining backgrounds with r0 =finite have a hard time to match the

lattice results, even for the first few glueballs.

Holography and strong coupling, E. Kiritsis
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞
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• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.

Holography and strong coupling, E. Kiritsis
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Improved Holographic QCD

• The effective action

Sstring = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

with a dilaton potential V (λ).

• In the UV λ(r) → 0 (asymptotic freedom) and the metric becomes AdS5.

• There is a 1-1 correspondence between the QCD β-function, β(λ) and

the dilaton potential:

• In the IR, λ →∞ and

V (λ) '
√

logλ λ
4
3+· · · , β(λ) ' −3

2
λ− 9

16

λ

logλ
+· · · , λ(E) ∼ E−

3
2(logE)

3
8
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