

Michael Mazur UC Santa Barbara and BaBar

Representing the B Factories

Outline

- Motivation why study semileptonic decays?
- Inclusive decays
 - $-|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

Why Study Semileptonic Decays?

- SL decays provide experimental access to studies of:
 - CKM mixing matrix elements
 - QCD form factors
 - Heavy quark parameters, mass of b and c quarks
 - New physics

Why (II) – The Unitarity Triangle

- Want to overconstrain the unitarity triangle
 - Need to measure $|V_{ub}| \& |V_{cb}|$ along with sin2 β
 - Tension between inclusive and exclusive measures of $|V_{ub}| \& |V_{cb}|$ need redundant methods

M. Mazur --- Semileptonic B and D Decays

How to Study SL Decays

Need a handle on the neutrinos!

- Can infer from missing momentum
- Can use event topology to estimate v momentum

- Very large datasets allow B_{reco} tagging
 - Fully reconstruct one B
 - Low efficiency (~3x10⁻³)
 - High purity sample with kinematic constraints

- Motivation why study semileptonic decays?
- Inclusive decays
 - $|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $-|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

Inclusive Decay Formalism $\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} (1 + A_{ew}) A_{pert} A_{nonpert}$

Measure nonperturbative parameters from shapes (moments) of inclusive decays

Measurement of $B \rightarrow X_c lv$ Moments

 X_c B_{recoil} Need to correct for biases due to lost particles, resolution

reco

- Belle: unfolding

e⁻

BaBar: calibration curves

OPE Global Fit (Kinetic Scheme)

Global fit also includes moments from CLEO, CDF, and DELPHI

$$\begin{split} |V_{cb}| &= (42.04 \pm 0.34_{\rm fit} \pm 0.59_{\Gamma_{\rm sl}}) \times 10^{-3} \\ m_b^{\rm kinetic} &= 4.597 \pm 0.034_{\rm fit} \; {\rm GeV} \\ m_c &= 1.1634 \pm 0.051_{\rm fit} \; {\rm GeV} \\ \mu_\pi^2 &= 0.4341 \pm 0.033_{\rm fit} \; {\rm GeV}^2 \\ \rho_D^3 &= 0.2927 \pm 0.020_{\rm fit} \; {\rm GeV}^2 \end{split}$$

1.6% precision on $|V_{cb}|$, 0.7% on m_b

Belle E, 152M BB, PRD75, 032001 (2007) Belle m_x 152M BB, PRD75,032005 (2007) BaBar m_x 232M BB, arXiv:0707.2670 (2007)

- Different mass schemes available
 - Kinetic Gambino & Uraltsev, Phys J C34, 181
 - 1S Bauer et al., Phys Rev D70, 094017

4 Mar 2008

- Motivation why study semileptonic decays?
- Inclusive decays
 - $-|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $-|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

Inclusive $|V_{ub}|$ Measurement

Charm background ~50x larger than signal Use kinematics to distinguish X_{u} signal from X_{c} BG ($m_{c} >> m_{u}$)

HQE parameters from $B \rightarrow X_c l v$ and $B \rightarrow s \gamma$ allow extrapolation to full phase space and extraction of $|V_{ub}|$

Inclusive $|V_{ub}|$ Results

BaBar 383M BB arXiv:0708.3702 (2007) Belle 275M BB PRL 95 241801 (2005)

 $|V_{ub}| = (3.98 \pm 0.15 \pm 0.30) \times 10^{-3}$ Measured to 8%

- Motivation why study semileptonic decays?
- Inclusive decays
 - $-|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $-|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

Exclusive Decay Formalism

• Dynamics described by form factors:

i.e.
$$D \rightarrow K l \nu$$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cs}|^2 \left| \vec{p}_K(q^2) \right|^3 \left| f_+(q^2) \right|^2$$
FFs functions of $q^2 = (p_l + p_v)^2$

- FF calculations on the market
 - Lattice QCD
 - Simple (modified) pole model
 - Quark models ISGW2, ...
 - HQET and dispersion relations

M. Mazur --- Semileptonic B and D Decays

- Motivation why study semileptonic decays?
- Inclusive decays
 - $-|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

Exclusive $|V_{ub}|$ Modes

• New results from CLEO on $B \rightarrow \pi, \pi^0, \rho, \rho^0, \omega, \eta, \eta' lv$:

CLEO 17M BB, PRD 76 012007 (2007) Belle SL tag 275M BB, PLB 648 139 (2007) BaBar untagged 227M BB, PRL 98 091801 (2007)

Exclusive $|V_{ub}|$ (II)

	$B [10^{-4}]$
$B^0 \to \pi^- \ell^+ \nu$	$1.37 \pm 0.15 \pm 0.11$
$B^0 \to \rho^- \ell^+ \nu$	$2.93 \pm 0.37 \pm 0.37$
$B^0 \rightarrow \eta \ell^+ \nu$	$0.44 \pm 0.23 \pm 0.11$
$B^0 \rightarrow \eta' \ell^+ \nu$	$2.66 \pm 0.80 \pm 0.56$

Using HPQCD form factor $|V_{ub}| = (3.6 \pm 0.4 \pm 0.2^{+0.6}_{-0.5}) \times 10^{-3}$ Consistent w/ HFAG average $|V_{ub}| = (3.33 \pm 0.21^{+0.58}_{-0.38}) \times 10^{-3}$

 3σ evidence for η' mode, BF much larger than η ... not theoretically favored...

Consistent with previous BaBar upper limit on η ' at only 5% CL... need more measurements to understand

- Motivation why study semileptonic decays?
- Inclusive decays
 - $-|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $-|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

BaBar 378M BB, arXiv:0712.3503 (2007)

Mode	$\mathcal{B}(B^-)$ [%]	${\cal B}(\overline B{}^0)$ [%]		
$D\ell^-\overline{\nu}_\ell$	$2.33 \pm 0.09 \pm 0.09$	$2.21 \pm 0.11 \pm 0.12$		
$D^*\ell^-\overline{\nu}_\ell$	$5.83 \pm 0.15 \pm 0.30$	$5.49 \pm 0.16 \pm 0.25$		
$D\pi^{\pm}\ell^{-}\overline{\nu}_{\ell}$	$0.42 \pm 0.06 \pm 0.03$	$0.43 \pm 0.08 \pm 0.03$		
$D^*\pi^\pm\ell^-\overline\nu_\ell$	$0.59 \pm 0.05 \pm 0.04$	$0.48 \pm 0.08 \pm 0.04$		

 $\mathcal{B}(B^- \to D^{(*)} \pi \ell^- \bar{\nu}_\ell) = (1.52 \pm 0.12_{stat.} \pm 0.10_{syst.})\%$ $\mathcal{B}(\overline{B^0} \to D^{(*)} \pi \ell^- \bar{\nu}_\ell) = (1.37 \pm 0.17_{stat.} \pm 0.10_{syst.})\%$

M. Mazur --- Semileptonic B and D Decays

$B \rightarrow D^{**} l v$

- Saturation puzzle:
 - Σ_{excl} < inclusive $B \rightarrow X_c l v$?
 - D and D^* only account for ~70% of X_c rate
- 1/2 vs. 3/2 puzzle:
 - HQET strongly favors j=3/2 states
 - Constrast to DELPHI result

 $\mathcal{B}(\bar{B} \to D_1^{\prime 0} X \ell^- \bar{\nu}_\ell) = (1.24 \pm 0.25 \pm 0.27)\%$ $\mathcal{B}(\bar{B} \to D_0^{*0} X \ell^- \bar{\nu}_\ell) = (0.42 \pm 0.33 \pm 0.22)\%$

Use $D^{(*)}\pi l\nu$ samples to disentangle D^{**} states...

M. Mazur --- Semileptonic B and D Decays

M. Mazur --- Semileptonic B and D Decays

$B \rightarrow D^{**} l \nu D^{(*)} \pi$ Mass Distributions

$B \rightarrow D^{**} l \nu D^{(*)} \pi$ Mass Distributions

M. Mazur --- Semileptonic B and D Decays

$B \rightarrow D^{**} l v$ Branching Fraction Results

Decay Mode	$\mathcal{B} (\bar{B} \to D^{**} \ell^- \bar{\nu}_\ell) \times \mathcal{B} (D^{**} \to D^{(*)} \pi) \% (\text{BELLE})$	BABAR Branching Fraction
	$D\pi$ invariant mass fit	
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	$0.24 \pm 0.04 \pm 0.06$	$0.28 \pm 0.05 \pm 0.04$
$B^- \rightarrow D_2^{*0} \ell^- \bar{\nu}_\ell$	$0.22 \pm 0.03 \pm 0.04$	$0.16 \pm 0.03 \pm 0.01$
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	$0.20 \pm 0.07 \pm 0.05$	$0.47 \pm 0.09 \pm 0.07$
$\bar{B}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	$0.22 \pm 0.04 \pm 0.04$	$0.08 \pm 0.04 \pm 0.02$
	$D^*\pi$ invariant mass fit	
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	< 0.07 @ 90 CL	$0.27 \pm 0.05 \pm 0.05$
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_\ell$	$0.42 \pm 0.07 \pm 0.07$	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^{*0} \ell^- \bar{\nu}_\ell$	$0.18 \pm 0.06 \pm 0.03$	$0.07 \pm 0.01 \pm 0.01$
$\bar{B}^0 \rightarrow D_1^{\prime +} \ell^- \bar{\nu}_\ell$	< 0.5 @ 90 CL	$0.37 \pm 0.07 \pm 0.05$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	$0.54 \pm 0.19 \pm 0.09$	$0.25 \pm 0.05 \pm 0.03$
$\bar{B}^0 \rightarrow D_2^{*+} \ell^- \bar{\nu}_\ell$	< 0.3 @ 90 CL	$0.04 \pm 0.02 \pm 0.01$

Belle: nonresonant $D^{(*)}\pi l\nu$ consistent with zero. BaBar: nonres fixed to zero in fit

Belle 657M BB, arXiv:0711.3252 (2007)

- Main difference w.r.t. Belle: significant signal (>6 σ) for D₁'lv
- 1/2 vs. 3/2 puzzle still lingers

4 Mar 2008

- Motivation why study semileptonic decays?
- Inclusive decays
 - $-|V_{cb}|$ and heavy-quark parameters
 - $-|V_{ub}|$ from inclusive decays
- Exclusive decays
 - Charm semileptonic decays, form factors
 - $-|V_{ub}|$ from exclusive decays
 - $B \rightarrow Dlv$, D^*lv , and $D^{**}lv$
 - $B \rightarrow D^{(*)} \tau v$
- Conclusions

- Extremely challenging: 2-3 ν
- B_{reco} tag + $D^{(*)}$ + l
 - (Belle also uses $\tau \rightarrow \pi v \mod e$)
- Signal extraction
 - BaBar: fit to m_{miss}^2 and p_l^*
 - Belle: cut on X_{miss} , fit tag mass

- Extremely challenging: 2-3 v
- B_{reco} tag + $D^{(*)}$ + l
 - (Belle also uses $\tau \rightarrow \pi v$ mode)
- Signal extraction
 - BaBar: fit to m_{miss}^2 and p_l^*
 - Belle: cut on X_{miss} , fit tag mass

Summary and Outlook

- Lots of work ongoing at the B factories to fully explore semileptonic physics
 - $|V_{ub}|$ from exclusive decays = $(3.33 \pm 0.21^{+0.58}) \times 10^{-3}$
 - Consistent with global UT fit (3.44±0.16)x10⁻³ [UTFit Collab]
 - $|V_{ub}|$ from inclusive decays = $(3.98\pm0.15\pm0.30)x10^{-3}$

Summary and Outlook (II)

- Lots of work ongoing at the B factories to fully explore semileptonic physics
 - $|V_{ub}|$ precision better than 10%, multiple techniques converging
 - $-|V_{cb}|$
 - Inclusive: (42.04±0.34±0.59)x10⁻³
- 1.6% precision
- Exclusive: $(38.4\pm0.7\pm1.4)x10^{-3}$ ~2 σ discrepancy
- Ongoing efforts to understand the composition of "D**" states
- τ final states becoming accessible, opening up windows to new physics

Backup

M. Mazur --- Semileptonic B and D Decays

D^{**}*l*v Fit Yields

Decay Mode	Yield	$\mathcal{B} = \mathcal{B} (B \rightarrow D^{**}\ell^- \bar{\nu}_\ell) \%$	Stat. Sign. (Incl. Syst.)			
$B^- \rightarrow D^{(*)+} \pi^- \ell^- \bar{\nu}_\ell$ invariant mass fit						
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_\ell$	134 ± 16	0.43 ± 0.05 11.6 (9.)				
$B^- \rightarrow D_2^{*0} \ell^- \bar{\nu}_\ell$	36 ± 6	0.34 ± 0.06	7.8 (6.8)			
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	117 ± 19	0.41 ± 0.07	6.9 (4.8)			
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	125 ± 23	0.42 ± 0.08	5.6(4.5)			
$\bar{B}^0 \rightarrow D^{(*)0} \pi^+ \ell^- \bar{\nu}_{\ell}$ invariant mass fit						
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	64 ± 12	0.37 ± 0.07	6.9(5.9)			
$\bar{B}^0 \rightarrow D_2^{*+} \ell^- \bar{\nu}_\ell$	11 ± 5	0.17 ± 0.08	2.6 (2.4)			
$\bar{B}^0 \rightarrow D_1^{\prime +} \ell^- \bar{\nu}_\ell$	81 ± 16	0.55 ± 0.11	6.0(4.8)			
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	124 ± 23	0.71 ± 0.13	5.8(4.6)			
$B^- \rightarrow D^{(*)} \pi \ell^- \bar{\nu}_{\ell}$ invariant mass fit (isospin-constraint)						
$B^- \rightarrow D_1 \ell^- \bar{\nu}_\ell$	132 ± 13	0.42 ± 0.04	13.4 (9.8)			
$B^- \rightarrow D_2^* \ell^- \bar{\nu}_\ell$	31 ± 5	0.29 ± 0.05 8.2 (5.6)				
$B^- \rightarrow D'_1 \ell^- \bar{\nu}_\ell$	134 ± 16	0.47 ± 0.06 8.0 (6.7)				
$B^- \rightarrow D_0^* \ell^- \bar{\nu}_\ell$	156 ± 20	0.52 ± 0.07	7.8(6.)			

$$\begin{aligned} \mathcal{B}(B^- \to D_1^0 \ell^- \bar{\nu}_{\ell}) &= (0.42 \pm 0.04_{stat.} \pm 0.04_{syst.})\% \\ \mathcal{B}(B^- \to D_1^{'0} \ell^- \bar{\nu}_{\ell}) &= (0.47 \pm 0.06_{stat.} \pm 0.06_{syst.})\% \\ \mathcal{B}(B^- \to D_2^{*0} \ell^- \bar{\nu}_{\ell}) &= (0.29 \pm 0.05_{stat.} \pm 0.03_{syst.})\% \\ \mathcal{B}(B^- \to D_0^{*0} \ell^- \bar{\nu}_{\ell}) &= (0.52 \pm 0.07_{stat.} \pm 0.06_{syst.})\% \end{aligned}$$

Isospin-constrained absolute BF's, assuming $D^{**} \rightarrow D^{(*)}\pi^+ = 2 \ D^{**} \rightarrow D^{(*)}\pi^0$ and $D_2^{**} \rightarrow D^*\pi / D_2^{**} \rightarrow D\pi = 31/69$

D^{**}lv Systematic Uncertainties

	Systematic uncertainty on $\Gamma(\overline{B} \to D^{**}(D^{(*)}\pi)\ell^-\bar{\nu}_\ell)/\Gamma(\overline{B} \to X\ell^-\bar{\nu}_\ell)$			
	$\bar{B} \to D_1 \ell^- \bar{\nu}_\ell$	$\bar{B} \to D_1' \ell^- \bar{\nu}_\ell$	$\bar{B} \to D_2^* \ell^- \bar{\nu}_\ell$	$\bar{B} \to D_0^* \ell^- \bar{\nu}_\ell$
Tracking efficiency	1.5	1.9	1.2	1.6
Neutral reconstruction	2.6	1.8	1.2	0.9
lepton ID	1.2	1.2	1.2	1.5
Soft particle efficiency	1.2	1.2	0.4	-
Monte Carlo corrections				
$\overline{B^0} - B^-$ cross-feed	0.3	0.3	0.2	0.2
$D^{(*)}$ Form factors	0.8	0.8	0.5	0.4
D^{**} Form factors	1.0	2.5	1.2	2.0
$D^{(*)}$ branching fractions	3.9	3.9	3.8	3.8
$\overline{B} \to X \ell^- \bar{\nu}_\ell$ branching fraction	1.7	1.7	1.7	1.7
B_{tag} selection	4.8	4.8	4.7	4.6
Fit technique				
$\overline{B} \to X \ell^- \overline{\nu}_{\ell}$ yield	0.7	0.7	0.7	0.7
$\overline{B} \to D^{**} \ell^- \bar{\nu}_\ell$ yield	5.6	10.6	7.4	8.5
Total systematic error	9.3	13.0	10.0	11.0
Statistical error	9.9	12.2	15.2	13.1

$D^{*+}lv$: Form Factors and $|V_{cb}|$

• Simultaneous χ^2 fit of 1D projections in three variables w, $\cos\theta_1$, $\cos\theta_2$ (integrated over angle χ) 79M BB

• First simultaneous measurement of form factors and $|V_{cb}|$, fully accounting for all correlations

Final results combined with Phys.Rev. D74 (2006) 092004 (which uses a full 4D fit) to give a combined value of the form factors:
 Syst. Uncertainties

 $\begin{aligned} \rho^2 &= 1.179 \pm 0.048 \pm 0.028 & \mathsf{R}_1(1) = 1.417 \pm 0.061 \pm 0.044 \\ \mathsf{R}_2(1) &= 0.836 \pm 0.037 \pm 0.022 & \mathsf{F}(1)|\mathsf{V}_{cb}| = (34.7 \pm 0.3 \pm 1.1) \ 10^{-3} \\ \text{New BaBar FF are ~5 times better than the old ones} \end{aligned}$

from CLEO (with ~3 fb⁻¹) 4 Mar 2008

M. Mazur --- Semileptonic B and D Decays

dominated by

 Bg, R_1, R_2

detector efficiencies.

$B^{-} \rightarrow D^{*0} l v$ Analysis Strategy $w \equiv \frac{m_B^2 + m_D^2}{2}$

b quark is heavy – change variables from q^2 to w (HQET):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w}(B \to D^* \ell \nu) = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} \mathcal{F}^2(w) \mathcal{G}(w)$$
Form factor
Phase space

Use data to measure form factor

slope in HQET parameterization

$$\begin{array}{ccc} B^- \to D^{*0} e^- \overline{\nu}_e \\ & \stackrel{\scriptstyle \label{eq:basic}}{\longrightarrow} D^0 \pi^0 \\ & \stackrel{\scriptstyle \label{eq:basic}}{\longrightarrow} K^- \pi^- \end{array}$$

Infer v direction from $m_v \approx 0$ and the fact that the B is \sim at rest in the 4S frame

M. Mazur --- Semileptonic B and D Decays

$B^{-} \rightarrow D^{*0} l v$ Results

226M BB pairs arXiv: 0707.2655

Consistent with previous measurements, help resolve mild discrepancies

M. Mazur --- Semileptonic B and D Decays

4 Mar 2008

Other $|V_{ub}|$ Inclusive Results

(4.34±0.16±0.25)x10⁻³

Including $B \rightarrow s\gamma$, (4.31±0.17±0.35)x10⁻³