Leptonic B Decays from BaBar

Kim Hojeong Stanford Linear Accelerator Center On behalf of the BaBar Collaboration

Outline

- Motivation
- BaBar Detector
- Present new results on the Leptonic B meson decays from the BaBar experiment.
 - $B^0 \rightarrow \ell^+ \ell^-$ (accepted by PRD; arXiv:0712.1516)
 - $B^+ \rightarrow \ell^+ \nu, B^0 \rightarrow \ell^+ \tau^-$ (submitted to PRD-RC)
 - $B^+ \rightarrow K^+ \nu \overline{\nu}$ (Preliminary Result)
 - $(\ell \Rightarrow e \text{ or } \mu)$

(charge conjugation modes are included implicitly)

Summary

Motivation

- Can provide essential information on the parameters of the Standard Model (SM) like
 - CKM matrix element, $|V_{ub}|$. (SL B decays $\sigma(|V_{ub}|) \sim 8\%$)
 - Leptonic B decay constant f_B . (LQCD $\sigma(f_B) \sim 10\%$)

$$\mathcal{B}(B^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 V_{ub}^2 \tau_B$$

- Highly suppressed in the Standard Model.
 - Process mediated by electroweak penguin, box diagrams or quark annihilation into W-boson.

 G_F : the Fermi coupling constants, $m_{B(\ell)}$: the mass of B meson (lepton), f_B : the decay constant V_{ub} : a Cabibbo-Kobayashi-Maskawa matrix element, τ_B : the B meson lifetime

Motivation - cont.

- Sensitive to New Physics (NP) beyond SM.
 - Some NP predicts bigger BF than SM prediction.
 - Minimum Supersymmetry SM (MSSM) predicts BF(B⁰ → ℓ⁺ ℓ) larger than SM (up to x100).
 - 2-Higgs doublet model of type-II can enhance or reduce BF(B⁺ → ℓ⁺ v).
 - SUSY Seesaw model predicts BF(B⁰ → ℓ⁺ τ⁻) ~ 10⁻¹⁰.
 - Looking for deviations from SM.
- Clean to measure.

BaBar Detector

A multipurpose asymmetric particle detector

Electron ID: a likelihood method with EMC, DCH and DIRC information. efficiency ~93%, pion mis-id <0.1% **Muon ID**: a neural network method with IFR information. efficiency ~73%, pion mis-id~2% **Kaon ID**: From DIRC info. Good K- π separation up to ~5 GeV/c.

03/04/08

A Search for $B^0 \rightarrow \ell^+ \ell^-$

03/04/08

Signal Selection

- Construct B⁰ from two oppositely charged tracks.
- Use Kinematic Variable (m_{ES} , ΔE)

- Perform maximum likelihood (ML) fit in m_{FS} - ΔE areas:
 - |∆E| < 0.150 GeV, 5.2 < m_{ES} < 5.2895 GeV/c².

Background Rejection

B background

- Dominant background: B⁰→π⁺π⁻, B⁰→K⁺π⁻
- Stringent Particle ID
 - e eff. ~93% (misID < 0.1%)
 - μ eff. ~73% (misID < 3%)
 - Bremsstrahlung recovery for e.

QED events

- e and μ coming from e⁺e⁻ interactions.
- Require at least 5 charged tracks in the event.

Legendre moments: momentum weighted by

Legendre expansion of the angle btw track and thrust axis.

Non-B Background

- Non-B decays are more jetlike in CM frame. Thrust axis Non-B decays
- Use event shape variables
 - $|\cos\theta_{\rm S}| < 0.8$, $\theta_{\rm S}$: sphericity.
 - R₂<0.95, R₂: 2nd to 0th Fox-Wolfram moment.
- Use Fisher discriminant (F)
 - Based on 0th & 2nd Legendre moments.
 - Use it in ML fit.

ML fit

- 4 categories of samples:
 - ee: both pass e PID not others •
 - $\mu\mu$: both pass μ PID not others
 - eµ: each pass e/μ PID not others
- Signal samples hh: at least one of them does not • pass e PID or µ PID
- Fit on hh sample (signal MC) for background (signal) shapes.

$$egin{split} \mathcal{L} &= rac{e^{-(N_{sig}+N_{bg})/N}}{N\sqrt{(N_{sig}+N_{bg})}} \cdot \prod_{i=1}^{N} igg(&\ &N_{sig} \cdot P_{sig}(m_{ ext{ES}})i \cdot P_{sig}(\Delta E)_i \cdot P_{sig}(\mathcal{F})_i \ &+ N_{bg} \cdot P_{bg}(m_{ ext{ES}})i \cdot P_{bg}(\Delta E)_i \cdot P_{bg}(\mathcal{F})_i \end{pmatrix} \end{split}$$

For signal, for background

- Perform fit on each signal sample
 - Float only signal and • background yields
 - Validation:
 - Toy MC study to check bias in background shape parameters.
 - Toy MC study with zero signal yield - only background yield floated.
 - No significant bias found.

03/04/08

Result

- Systematic Uncertainties:
 - Total ~ 4%.
 - Dominant: Particle ID.
- Set 90% CL Upper Limit on the BF using a Bayesian approach (a flat prior for N>0), including systematics:

With 384 M BB events

	eff. (%)	# signal	UL(BF) ±10 ⁻⁸
e⁺e⁻	16.6 ± 0.3	0.6 ± 2.1	11.3
μ+μ-	15.7 ± 0.2	-4.9 ± 1.4	5.2
e⁺μ⁻	17.1 ± 0.2	1.1 ± 1.8	9.2

Moriond EW 08

0

Fisher $[B^0 \rightarrow \mu\mu]$

0 └--3

3

Search for $B^+ \rightarrow \ell^+ \nu$ and $B^0 \rightarrow \ell^+ \tau^-$

Analysis Method

- Hadronic Tagging:
 - Due to undetectable particles at BaBar (neutrino)
 - Reconstruct one B meson in the event (B_{tag})
 - Look at the rest of event, try to reconstruct signal B (B_{sig})

- Pros & cons:
 - Low background
 - Low statistics

- Tag side:
 - Use m_{ES}, ∆E, event shape variables.
 - Reco. efficiency: ~0.2%
- Signal side:
 - Lepton momentum is monoenergetic in B_{sig} rest frame.
 - Reconstruct ~90% of total tau decays
 - Utilize missing momentum (due to neutrino) and extra energy deposit in Calorimeter (should be close to 0 for signal).

03/04/08

Leptonic B Decays

BABAR

B⁺→ μ⁺ν

BABAR

 $B^0 \rightarrow \mu^+ \tau$

- Unbinned ML fit on lepton momentum in B_{sia} rest frame.
- Fit validation
 - No significant bias.
- Dominant systematics:
 - Fit function shape.
 - Tagging efficiency.
 - Total ~ 15%.
- Set an UL on BF at 90% CL including systematics using Bayesian method.
 - A flat prior for N>0

With 342 fb⁻¹ data (378 M BB events) 03/04/08 Leptonic B Decays

A Search for $B^+ \rightarrow K^+ \nu \overline{\nu}$

Analysis Method

- Semileptonic Tagging:
 - Due to undetectable particles at BaBar (neutrino)
 - Reconstruct one B meson in the event (B_{tag})
 - Look at the rest of event, try to reconstruct signal B (B_{sig})

- Compared to Hadronic tag, SL tag has:
 - More background.
 - More statistics.

• Tag side:

 Use |cosθ_{B,D*l}| for combinatoric background discrimination (Assume ν is only missing particle)

$$\cos \theta_{B,D^{*0}\ell} \equiv \frac{2 E_{\text{beam}} \cdot E_{D^{*0}\ell} - m_B^2 - m_{D^{*0}\ell}^2}{2 |\mathbf{p}_{D^{*0}\ell}| \cdot \sqrt{E_{\text{beam}}^2 - m_B^2}}$$

- Signal side:
 - Utilize 23 variables. Examples:
 # of tracks left, min momentum of the tracks, min missing energy due to neutrinos, extra energy deposit in Calorimeter, D⁰ mass, etc.
 - Use 22 variables as input for Random Forest method. (except D⁰ mass)

03/04/08

Leptonic B Decays

Moriond E' 08

Analysis Method - cont.

- Random Forest method
 - A multivariate method.
 - 100 Decision Trees with random subset of input variables.
 - RF output: (naively speaking) how many fraction of Decision Trees think this event is signal.
 - Values are between 0 and 1. https://sourceforge.net/projects/statpatrec
- Signal box in RF output and D⁰ mass plane blinded.
 - RF output > 0.82
 - D⁰ mass range (diff. for mode)

- Background estimation
 - Continuum background level estimated from sideband subtraction in D⁰ mass distribution of data.
 - Peaking background level estimated from same method using MC events. Corrected for data.

03/04/08

Leptonic B Decays

Result

Systematics

- Total ~13.4%.
- Dominant:
 - Tagging efficiency.
 - Signal efficiency.
- Utilize double tag events.
 - Both B mesons decay to D^(*)_ℓv.
 - Compare data/MC.
- Get 90% CL UL on BF, using frequentist's method, including systematics.

Signal MC in arbitrary scale

With 351 M BB events

Expected # events	Observed # events	UL @ 90% CL
30.71±10.71	38	4.2×10 ⁻⁵

Summary

BaBar, CDF, Belle, CLEO

Mode	# BB events	UL @ 90% CL	Prev. Best UL	
$B^0 \rightarrow e^+e^-$		11.3 × 10 ⁻⁸	6.1 × 10 ⁻⁸	
$B^0 \rightarrow \mu^+ \mu^-$	384 M	5.2 × 10⁻ ⁸	1.8 × 10 ⁻⁸	
$B^0 \rightarrow e^+ \mu^-$		9.2 × 10⁻ ⁸	18 × 10 ⁻⁸	
$B^+ \rightarrow e^+ v$		5.2 × 10 ⁻⁶	9.8 × 10 ⁻⁷	
$B^+ \rightarrow \mu^+ \nu$		5.6 × 10 ⁻⁶	1.7 × 10 ⁻⁶	
$B^0 \rightarrow e^+ \tau^-$	370 IVI	2.8 × 10⁻⁵	1.4 × 10 ⁻⁴	
$B^0 \rightarrow \mu^+ \tau^-$		2.2 × 10⁻⁵	3.8 × 10 ⁻⁵	
$B^+ \rightarrow K^+ \nu \overline{\nu}$	351 M	4.2 × 10 ⁻⁵	1.4 × 10 ⁻⁵	

- BaBar is pursuing measurements on variety of rare leptonic B meson decays.
- No deviation from SM observed.

BACKUP SLIDES

03/04/08

Kim Hojeong

PEP-II Accelerator

03/04/08

Data

- Taken at Y(4S) resonance (on-peak)
 - $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0 : B^+B^- \sim 50:50$
 - Contains bb and continuum events.

e⁺e⁻ →	bb	cc	นนิ	dd	SS	$\tau^+\tau^-$
Cross-section (nb)	1.05	1.30	1.39	0.35	0.35	0.94
03/04/08	L	eptonic I	B Decave	6 M	oriond E	W 08

continuum

- Taken at 40 MeV below Ƴ(4S)
- resonance (off-peak)
 - Contains continuum events only.
- Monte Carlo (MC) samples on
 - Generic BB events.
 - Generic continuum events.
 - Specific signal events.

Luminosity

As of 2008/02/24 00:00

A Search for $B^0 \rightarrow \ell^+ \ell^- \gamma$

A Search for $B^0 \rightarrow \ell^+ \ell^- \gamma$

Analysis Method

- Reconstruct two oppositely charged tracks and γ
- Signal Box is blinded until analysis is finalized.

Background

- Similar backgrounds as $B^0 \rightarrow \ell^+ \ell$ analysis.
- Minimum photon energy: 300 MeV
- Background estimation is from sideband areas in m_{ES} - ΔE plane.

Result

Set 90% CL UL (freq. method) including systematics.

With 320 M BB events

	# obs	# estimated	UL
eeγ	1	1.75±1.38±0.36	1.2×10 ⁻⁷
μμγ	1	$2.66 \pm 1.40 \pm 1.58$	1.6×10 ⁻⁷

